Spinach Leaves (spinach + leaf)

Distribution by Scientific Domains


Selected Abstracts


Chromotropic acid-functionalized polyurethane foam: A new sorbent for on-line preconcentration and determination of cobalt and nickel in lettuce samples

JOURNAL OF SEPARATION SCIENCE, JSS, Issue 9 2006
Valfredo Azevedo Lemos
Abstract A chromotropic acid-functionalized polyurethane foam has been developed for use in an on-line preconcentration system for cobalt and nickel determination. The packing material was prepared by covalent coupling of chromotropic acid with the polyurethane foam through an azo group. Co and Ni ions were sorbed in the minicolumn, from which they could be eluted directly to the nebulizer-burner system of a flame atomic absorption spectrometer. Elution of cobalt and nickel from the minicolumn can be accomplished with 0.50 and 0.75 M HCl solutions, respectively. The enrichment factors obtained were 22 (Co) and 27 (Ni), for 60 s preconcentration time, and 57 (Co) and 59 (Ni), if a preconcentration time of 180 s was used. Under the optimum conditions, the proposed procedure allowed the determination of metals with detection limits of 0.43 (cobalt) and 0.52 ,g/L (nickel), respectively, on using preconcentration periods of 180 s. The accuracy of the developed procedure was evaluated by analysis of the certified reference materials NIST 1515 Apple Leaves and NIST 1570a Spinach Leaves. The method was applied to the analysis of lettuce samples. The contents of cobalt in the samples analyzed varied from 0.75 to 0.98 ,g/g. Nickel was not detected in the lettuce samples. [source]


Use of episcopic differential interference contrast microscopy to identify bacterial biofilms on salad leaves and track colonization by Salmonella Thompson

ENVIRONMENTAL MICROBIOLOGY, Issue 4 2008
J. C. Warner
Summary Zoonotic pathogens such as Salmonella can cause gastrointestinal illness if they are ingested with food. Foods such as salads pose a greater risk because they are consumed raw and have been the source of major outbreaks of disease from fresh produce. The novel light microscopy methods used in this study allow detailed, high resolution imaging of the leaf surface environment (the phyllosphere) and allow pathogen tracking. Episcopic differential interference contrast microscopy coupled with epifluorescence was used to view the natural microflora in situ on salad leaves and their topographical distribution. Fluorescent nucleic acid staining was used to differentiate between bacterial colonists and inorganic debris. Salmonella enterica serovar Thompson expressing green fluorescent protein was inoculated onto individual spinach leaves for 24 h at 22°C in order to observe spatial and temporal patterning of colonization on the two surfaces of each leaf under different osmotic conditions. The results obtained show that salad leaves are host to high numbers of bacteria, typically 105 per square millimetre. Cells are present in complex three-dimensional aggregations which often have a slimy appearance, suggesting the presence of biofilms. Washing of the leaves had little effect on the number of adherent pathogens, suggesting very strong attachment. Episcopic differential interference contrast microscopy is a rapid alternative to both scanning electron microscopy and confocal laser scanning microscopy for visualizing leaf topography and biofilm formation in the natural state. [source]


Temperature acclimation of photosynthesis in spinach leaves: analyses of photosynthetic components and temperature dependencies of photosynthetic partial reactions

PLANT CELL & ENVIRONMENT, Issue 4 2005
WATARU YAMORI
ABSTRACT Spinach (Spinacia oleracea) plants were grown under the day/night temperature regime of 15/10 °C (LT) or 30/25 °C (HT). The plants were also transferred from HT to LT when the sample leaves were at particular developmental stages (HL-transfer). With fully mature leaves, the light-saturated photosynthetic rate (A) at the ambient CO2 concentration (Ca) of 1500 µL L,1 (A1500) and the initial slope of A versus intercellular CO2 concentration (Ci) at low Ci region (IS) were obtained to assess capacities of RuBP regeneration and carboxylation. Photosynthetic components including Rubisco and cytochrome f (Cyt f) were also determined. The optimum temperatures for A at Ca of 360 µL L,1 (A360), A1500 and IS in HT leaves were 27, 36 and 24 °C, whereas those in LT leaves were 18, 30 and 18 °C. The optimum temperatures in HL-transfer leaves approached those of LT leaves with the increase in the duration at LT. The shift in the optimum temperature was greater and quicker for IS than A1500. By the HL-transfer, the maximum values of A1500 and IS also increased. The maximum A1500 and Cyt f content increased more promptly than IS and Rubisco content. Changes in the Cyt f/Rubisco ratio were reflected to those in the A1500/IS ratio. Taken together, photosynthetic acclimation to low temperature in spinach leaves was due not only to the change in the balance of the absolute rates of RuBP regeneration and carboxylation but also to the large change in the optimum temperature of RuBP carboxylation. [source]


Profiles of light absorption and chlorophyll within spinach leaves from chlorophyll fluorescence

PLANT CELL & ENVIRONMENT, Issue 10 2002
T. C. Vogelmann
Abstract Chlorophyll fluorescence was used to estimate profiles of absorbed light within chlorophyll solutions and leaves. For chlorophyll solutions, the intensity of the emitted fluorescence declined in a log,linear manner with the distance from ,the ,irradiated ,surface ,as ,predicted ,by ,Beer's ,law. The amount of fluorescence was proportional to chlorophyll ,concentration ,for ,chlorophyll ,solutions ,given ,epi-illumination on a microscope slide. These relationships appeared to hold for more optically complex spinach leaves. The profile of chlorophyll fluorescence emitted by leaf cross sections given epi-illumination corresponded to chlorophyll content measured in extracts of leaf paradermal sections. Thus epifluorescence was used to estimate relative chlorophyll content through leaf tissues. Fluorescence profiles across leaves depended on wavelength and orientation, reaching a peak at 50,70 µm depth. By infiltrating leaves with water, the pathlengthening due to scattering at the airspace : cell wall interfaces was calculated. Surprisingly, the palisade and spongy mesophyll had similar values for pathlengthening with the value being greatest for green light (550 > 650 > 450 nm). By combining fluorescence profiles with chlorophyll distribution across the leaf, the profile of the apparent extinction coefficient was calculated. The light profiles within spinach leaves could be well approximated by an apparent extinction coefficient and the Beer,Lambert/Bouguer laws. Light was absorbed at greater depths than predicted from fibre optic measurements, with 50% of blue and green light reaching 125 and 240 µm deep, respectively. [source]


Measurement of gradients of absorbed light in spinach leaves from chlorophyll fluorescence profiles

PLANT CELL & ENVIRONMENT, Issue 12 2000
T. C. Vogelmann
ABSTRACT Profiles of chlorophyll fluorescence were measured in spinach leaves irradiated with monochromatic light. The characteristics of the profiles within the mesophyll were determined by the optical properties of the leaf tissue and the spectral quality of the actinic light. When leaves were infiltrated with 10,4M DCMU [3-(3,4-dichlorophenyl)-1, 1-dimethyl-urea] or water, treatments that minimized light scattering, irradiation with 2000 ,mol m,2 s,1 green light produced broad Gaussian-shaped fluorescence profiles that spanned most of the mesophyll. Profiles for chlorophyll fluorescence in the red (680 ± 16 nm) and far red (, > 710 nm) were similar except that there was elevated red fluorescence near the adaxial leaf surface relative to far red fluorescence. Fluorescence profiles were narrower in non-infiltrated leaf samples where light scattering increased the light gradient. The fluorescence profile was broader when the leaf was irradiated on its adaxial versus abaxial surface due to the contrasting optical properties of the palisade and spongy mesophyll. Irradiation with blue, red and green monochromatic light produced profiles that peaked 50, 100 and 150 ,m, respectively, beneath the irradiated surface. These results are consistent with previous measurements of the light gradient in spinach and they agree qualitatively with measurements of carbon fixation under monochromatic blue, red and green light. These results suggest that chlorophyll fluorescence profiles may be used to estimate the distribution of quanta that are absorbed within the leaf for photosynthesis. [source]


Purification of colored photosynthetic proteins for understanding protein isolation principles

BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION, Issue 2 2003
M. Teresa Bes
Abstract The purification of a protein is the essential initial step in the study of its physical and biological properties and is one of the most common procedures in biochemistry. This article describes a method for teaching purification skills through the partial isolation of ferredoxin-NADP+ reductase and ferredoxin from a single cell batch. The method has been used for several years in an introductory biochemistry course using spinach leaves as cellular source. The protocol gives a complete picture of the preparation of a crude extract and the subsequent isolation of both electron transport proteins on a laboratory scale. It introduces students to the use of different techniques for the purification and detection of proteins and allows them to develop a number of valuable experimental and analytical skills without necessarily resorting to complicated or expensive equipment. [source]


Fluorescence Quenching of Pheophytin-a by Copper(II) Ions

CHINESE JOURNAL OF CHEMISTRY, Issue 3 2009
Mingbo HU
Abstract A method was developed for determination of Cu(II) ions quantitatively by measuring fluorescent intensity of pheophytin-a (Pheoa) solution. The Pheoa was obtained by de-intercalation of magnesium from the porphyrin ring of chlorophyll-a (Chla) extracted from fresh spinach leaves. Its two UV-Vis absorption peaks at 505 and 535 nm in acetone solution have been observed but disappeared when the acetone solution of Pheoa was mixed with a Cu(II) ion aqueous solution. A fluorescence quenching phenomenon was thus observed when the acetone solution of Pheoa was mixed with an aqueous solution of Cu(II) ions. However, other physiologically relevant cations rarely caused any quenching fluorescence of Pheoa under the same experimental conditions. Kinetics of the fluorescence fading process was investigated by measuring the effects of Cu(II) ion concentration, reaction time and reaction temperature on the fluorescence intensity of the Pheoa acetone solution. An activation energy of (10±1) kJ·mol,1 was estimated from Arrhenius empirical relation assuming that the interaction between the Pheoa and the Cu(II) ions was the first order reaction. The calibration graph obtained with the fluorescence was linear over the Cu(II) concentration range of 8.0×10,5,8.0×10,7 mol·dm,3 with a detection limit of 8.0×10,7 mol·dm,3 for Cu(II) ion. [source]