Home About us Contact | |||
Spin Waves (spin + wave)
Selected AbstractsReduction of quantum fluctuations by anisotropy fields in Heisenberg ferro- and antiferromagnetsANNALEN DER PHYSIK, Issue 10-11 2009B. Vogt Abstract The physical properties of quantum systems, which are described by the anisotropic Heisenberg model, are influenced by thermal as well as by quantum fluctuations. Such a quantum Heisenberg system can be profoundly changed towards a classical system by tuning two parameters, namely the total spin and the anisotropy field: Large easy-axis anisotropy fields, which drive the system towards the classical Ising model, as well as large spin quantum numbers suppress the quantum fluctuations and lead to a classical limit. We elucidate the incipience of this reduction of quantum fluctuations. In order to illustrate the resulting effects we determine the critical temperatures for ferro- and antiferromagnets and the ground state sublattice magnetization for antiferromagnets. The outcome depends on the dimension, the spin quantum number and the anisotropy field and is studied for a widespread range of these parameters. We compare the results obtained by: Classical Mean Field, Quantum Mean Field, Linear Spin Wave and Random Phase Approximation. Our findings are confirmed and quantitatively improved by numerical Quantum Monte Carlo simulations. The differences between the ferromagnet and antiferromagnet are investigated. We finally find a comprehensive picture of the classical trends and elucidate the suppression of quantum fluctuations in anisotropic spin systems. In particular, we find that the quantum fluctuations are extraordinarily sensitive to the presence of small anisotropy fields. This sensitivity can be quantified by introducing an "anisotropy susceptibility". [source] Reduction of quantum fluctuations by anisotropy fields in Heisenberg ferro- and antiferromagnetsANNALEN DER PHYSIK, Issue 10-11 2009B. Vogt Abstract The physical properties of quantum systems, which are described by the anisotropic Heisenberg model, are influenced by thermal as well as by quantum fluctuations. Such a quantum Heisenberg system can be profoundly changed towards a classical system by tuning two parameters, namely the total spin and the anisotropy field: Large easy-axis anisotropy fields, which drive the system towards the classical Ising model, as well as large spin quantum numbers suppress the quantum fluctuations and lead to a classical limit. We elucidate the incipience of this reduction of quantum fluctuations. In order to illustrate the resulting effects we determine the critical temperatures for ferro- and antiferromagnets and the ground state sublattice magnetization for antiferromagnets. The outcome depends on the dimension, the spin quantum number and the anisotropy field and is studied for a widespread range of these parameters. We compare the results obtained by: Classical Mean Field, Quantum Mean Field, Linear Spin Wave and Random Phase Approximation. Our findings are confirmed and quantitatively improved by numerical Quantum Monte Carlo simulations. The differences between the ferromagnet and antiferromagnet are investigated. We finally find a comprehensive picture of the classical trends and elucidate the suppression of quantum fluctuations in anisotropic spin systems. In particular, we find that the quantum fluctuations are extraordinarily sensitive to the presence of small anisotropy fields. This sensitivity can be quantified by introducing an "anisotropy susceptibility". [source] Magnonics: Spin Waves on the NanoscaleADVANCED MATERIALS, Issue 28 2009Sebastian Neusser Abstract Magnetic nanostructures have long been in the focus of intense research in the magnetic storage industry. For data storage the nonvolatility of magnetic states is of utmost relevance. As information technology generates the need for higher and higher data-transfer rates, research efforts have moved to understand magnetization dynamics. Here, spin waves and their particle-like analog, magnons, are increasingly attracting interest. High-quality nanopatterned magnetic media now offer new ways to transmit and process information without moving electrical charges. This new functionality is enabled by spin waves. They are confined by novel functioning principles, which render them especially suitable to operate at the nanoscale. Magnonic crystals are expected to provide full control of spin waves, similarly to what photonic crystals already do for light. Combined with nonvolatility, multifunctional metamaterials might be formed. We report recent advances in this rapidly increasing research field called magnonics. [source] Photoinduced spin waves in Fe/AlGaAs (001) heterostructurePHYSICA STATUS SOLIDI (C) - CURRENT TOPICS IN SOLID STATE PHYSICS, Issue 8 2008H. B. Zhao Abstract Photoinduced spin waves are investigated for Fe films on AlGaAs (001) using the time resolved magneto-optical Kerr effect. We observe first and second order standing spin waves as well as uniform magnetization precession. The anisotropy fields and exchange stiffness constant are obtained from the field and azimuthal dependence of the spin wave frequencies using the Landau-Lifshitz-Gilbert equation. A comparison with spin wave resonance measurements reveals a more pronounced interface effect on the low order standing spin waves in thin films. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] |