Home About us Contact | |||
Spin Relaxation (spin + relaxation)
Kinds of Spin Relaxation Terms modified by Spin Relaxation Selected AbstractsMicrosecond Protein Dynamics Measured by 13C, Rotating-Frame Spin RelaxationCHEMBIOCHEM, Issue 9 2005Patrik Lundström Abstract NMR spin relaxation in the rotating frame (R1,) is a unique method for atomic-resolution characterization of conformational (chemical) exchange processes occurring on the microsecond timescale. We present a rotating-frame13C,relaxation dispersion experiment for measuring conformational dynamics in uniformly13C-labeled proteins. The experiment was validated by using the E140Q mutant of the C-terminal fragment of calmodulin, which exhibits significant conformational exchange between two major conformations, as gauged from previous15N and1H relaxation studies. Consistent with previous work, the present13C, R1,experiment detects conformational-exchange dynamics throughout the protein. The average correlation time of ,,ex,=25±8 ,s is in excellent agreement with those determined previously from1H and15N R1,relaxation data: ,,ex,=19±7 and 21±3 ,s, respectively. The extracted chemical-shift differences between the exchanging states reveal significant fluctuations in dihedral angles within single regions of Ramachandran ,,, space, that were not identified from the1H and15N relaxation data. The present results underscore the advantage of using several types of nuclei to probe exchange dynamics in biomolecules. [source] Muon Implantation of Metallocenes: FerroceneCHEMISTRY - A EUROPEAN JOURNAL, Issue 8 2007Upali Abstract Muon Spin Relaxation and Avoided Level Crossing (ALC) measurements of ferrocene are reported. The main features observed are five high field resonances in the ALC spectrum at about 3.26, 2.44, 2.04, 1.19 and 1.17,T, for the low-temperature phase at 18,K. The high-temperature phase at 295,K shows that only the last feature shifted down to about 0.49,T and a muon spin relaxation peak at about 0.106,T which approaches zero field when reaching the phase transition temperature of 164,K. A model involving three muoniated radicals, two with muonium addition to the cyclopentadienyl ring and the other to the metal atom, is postulated to rationalise these observations. A theoretical treatment involving spin-orbit coupling is found to be required to understand the Fe,Mu adduct, where an interesting interplay between the ferrocene ring dynamics and the spin-orbit coupling of the unpaired electron is shown to be important. The limiting temperature above which the full effect of spin-orbit interaction is observable in the ,SR spectra of ferrocene was estimated to be 584,K. Correlation time for the ring rotation dynamics of the Fe,Mu radical at this temperature is 3.2,ps. Estimated electron g values and the changes in zero-field splittings for this temperature range are also reported. [source] Wide-ranging molecular mobilities of water in active pharmaceutical ingredient (API) hydrates as determined by NMR relaxation timesJOURNAL OF PHARMACEUTICAL SCIENCES, Issue 10 2008Sumie Yoshioka Abstract In order to examine the possibility of determining the molecular mobility of hydration water in active pharmaceutical ingredient (API) hydrates by NMR relaxation measurement, spin,spin relaxation and spin,lattice relaxation were measured for the 11 API hydrates listed in the Japanese Pharmacopeia using pulsed 1H-NMR. For hydration water that has relatively high mobility and shows Lorentzian decay, molecular mobility as determined by spin,spin relaxation time (T2) was correlated with ease of evaporation under both nonisothermal and isothermal conditions, as determined by DSC and water vapor sorption isotherm analysis, respectively. Thus, T2 may be considered a useful parameter which indicates the molecular mobility of hydration water. In contrast, for hydration water that has low mobility and shows Gaussian decay, T2 was found not to correlate with ease of evaporation under nonisothermal conditions, which suggests that in this case, the molecular mobility of hydration water was too low to be determined by T2. A wide range of water mobilities was found among API hydrates, from low mobility that could not be evaluated by NMR relaxation time, such as that of the water molecules in pipemidic acid hydrate, to high mobility that could be evaluated by this method, such as that of the water molecules in ceftazidime hydrate. © 2008 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 97:4258,4268, 2008 [source] Anisotropy of spin relaxation of water protons in cartilage and tendonNMR IN BIOMEDICINE, Issue 3 2010Konstantin I. Momot Abstract Transverse spin relaxation rates of water protons in articular cartilage and tendon depend on the orientation of the tissue relative to the applied static magnetic field. This complicates the interpretation of magnetic resonance images of these tissues. At the same time, relaxation data can provide information about their organisation and microstructure. We present a theoretical analysis of the anisotropy of spin relaxation of water protons observed in fully hydrated cartilage. We demonstrate that the anisotropy of transverse relaxation is due almost entirely to intramolecular dipolar coupling modulated by a specific mode of slow molecular motion: the diffusion of water molecules in the hydration shell of a collagen fibre around the fibre, such that the molecular director remains perpendicular to the fibre. The theoretical anisotropy arising from this mechanism follows the ,magic-angle' dependence observed in magnetic-resonance measurements of cartilage and tendon and is in good agreement with the available experimental results. We discuss the implications of the theoretical findings for MRI of ordered collagenous tissues. Copyright © 2009 John Wiley & Sons, Ltd. [source] Chemical bath deposition of CdSe and CdS nanocrystalline films: tailoring of morphology, optical properties and carrier dynamicsPHYSICA STATUS SOLIDI (A) APPLICATIONS AND MATERIALS SCIENCE, Issue 10 2008Abstract We review the results of our research towards tailoring morphology and optical properties of films consisting of closely-spaced nanocrystals of CdSe and CdS whose optical band-gap can be tuned to cover the whole visible spectral range. On basis of the obtained results, in particular of photoexcited carrier dynamics, we have proposed a microscopic model that describes well the optical properties of the films. We have also showed that the spin relaxation of electrons in these nanocrystalline films is different than that in mutually isolated nanocrystals of the same size. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Magneto-optical spectroscopy of spin injection and spin relaxation in ZnMnSe/ZnCdSe and GaMnN/InGaN spin light-emitting structuresPHYSICA STATUS SOLIDI (A) APPLICATIONS AND MATERIALS SCIENCE, Issue 1 2007I. A. Buyanova Abstract In this paper we review our recent results from in-depth investigations of physical mechanisms which govern efficiency of several processes important for future spintronic devises, such as spin alignment within diluted magnetic semiconductors (DMS), spin injection from DMS to non-magnetic spin detectors (SDs) and also spin depolarization within SD. Spin-injection structures based on II,VIs (e.g. ZnMnSe/Zn(Cd)Se) and III,Vs (e.g. GaMnN/Ga(In)N) were studied as model cases. Exciton spin relaxation within ZnMnSe DMS, important for spin alignment, was found to critically depend on Zeeman splitting of the exciton states and is largely facilitated by involvement of longitudinal optical (LO) phonons. Optical spin injection in ZnMnSe/Zn(Cd)Se was shown to be governed by (i) commonly believed tunneling of individual carriers or excitons and (ii) energy transfer via localized excitons and spatially separated localized electron,hole pairs (LEHP) located within DMS. Unexpectedly, the latter mechanism is in fact found to dominate spin injections. We shall also show that spin depolarization in the studied structures is essentially determined by ef- ficient spin relaxation within non-magnetic spin detectors, which is an important factor limiting efficiency of spin detection. Detailed physical mechanisms leading to efficient spin depolarization will be discussed. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Anisotropic FMR-linewidth of triple-domain Fe layers on hexagonal GaN(0001)PHYSICA STATUS SOLIDI (A) APPLICATIONS AND MATERIALS SCIENCE, Issue 7 2006M. Buchmeier Abstract We present a ferromagnetic resonance (FMR) study of Fe films with thicknesses between 5 and 70 nm prepared by electron-beam evaporation on top of hexagonal GaN(0001). X-ray diffraction (XRD) and low-energy electron diffraction (LEED) suggest the growth in crystallographic Fe(110) domains with three different orientations. The magnetic properties have been investigated by in-plane angle-dependent FMR at frequencies between 4.5 to 24 GHz. All samples show a hexagonal in-plane anisotropy with the easy axes oriented parallel to the Fe [001] directions. The anisotropy field strength of about 8 mT reveals a bulk-like thickness dependence. Therefore, we can exclude the following origins of anisotropy: (i) interface effects because of the bulk-like thickness dependence and (ii) averaged first order cubic or uniaxial anisotropies arising from the three grain orientations because of the relative strengths. We qualitatively explain the sixfold anisotropy by spin relaxation inside the grains. The FMR linewidth versus frequency curves are linear with almost no zero-frequency offset indicating a good homogeneity of the magnetic properties over the sample area. However, the effective damping parameter , shows pronounced anisotropy and thickness dependence, with enhanced damping along the hard axes and for thicker layers. We suggest that the additional damping can be explained by two-magnon scattering at defects which are due to the triple domain structure. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Exciton states and tunneling in semimagnetic asymmetric double quantum wellsPHYSICA STATUS SOLIDI (B) BASIC SOLID STATE PHYSICS, Issue 2 2010S. V. Zaitsev Abstract Exciton level structure and interwell relaxation are studied in Cd(Mn,Mg)Te-based asymmetric double quantum wells (ADQWs) by a steady-state optical spectroscopy in magnetic fields up to B,=,10,T. The as grown heterostructures with CdTe QWs and nonmagnetic interwell CdMgTe barrier were subjected to a rapid temperature annealing to introduce Mn and Mg atoms from opposite barriers inside the QWs which results in a formation of the ADQW with completely different magnetic field behavior of the intrawell excitons. The giant Zeeman effect in the QW with magnetic Mn ions gives rise to a crossing of the ground exciton levels in two QWs at BC,,,3,6,T which is accompanied by a reverse of the interwell tunneling direction. In a single-particle picture the exciton tunneling is forbidden at B,<,1,T as supported by calculations. Experimentally, nevertheless, a very efficient interwell relaxation of excitons is found at resonant excitation in the whole magnetic field range, regardless of the tunneling direction, emphasizing importance of excitonic correlations in the interwell tunneling. At nonresonant excitation an unexpectedly slow relaxation of the ,, -polarized excitons from the nonmagnetic QW to the ,+ -polarized ground state in the semimagnetic QW is observed at B,>,BC, giving rise to a nonequilibrium distribution of excitons in ADQW. A strong dependence of the total circular polarization degree on the hh,lh splitting ,hh,lh in the nonmagnetic QW is found and attributed to the spin dependent interwell tunneling controlled by an exciton spin relaxation. Different charge-transfer mechanisms are analyzed in details and an elastic scattering due to a strong disorder is suggested as the main tunneling mechanism with the underlying influence of the valence band-mixing. [source] Spin-dependent electron tunnelling and spin relaxation in quantum dots in regime with filling factor of around twoPHYSICA STATUS SOLIDI (B) BASIC SOLID STATE PHYSICS, Issue 8 2007S. Tarucha Abstract Spin-dependent electron tunnelling and spin relaxation were studied for a quantum dot in the regime with a filling factor between two and four. In this regime, the electronic configuration of a quantum dot undergoes transitions between a spin singlet and triplet states for an even number of electrons, and between two doublet states for an odd number of electrons. These transitions were clearly distinguished by using quantum wires as spin filtering contact leads to the dot. In addition, the temporal behaviour of electron tunnelling was studied for a quantum dot in a similar filling factor regime, using a quantum point contact as a charge sensor. Electron tunnelling through the dot in a spin singlet state could be well distinguished from that in a triplet state using the fact that the tunnelling rate was much larger for the triplet state. The difference in the tunnelling rate was also used to derive a triplet-to-singlet-state relaxation time. The obtained relaxation time agreed fairly well with that predicted by the theory of spin-orbit interaction. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Exciton-spin relaxation in weakly confining quantum dots due to spin,orbit interactionPHYSICA STATUS SOLIDI (B) BASIC SOLID STATE PHYSICS, Issue 10 2006E. Tsitsishvili Abstract In weakly confining quantum structures such as interfacial islands or quantum disks the exciton-spin relaxation is governed by two independent electron and hole spin flip processes between the optically active and dark states. A microscopic theory for these transitions is presented which is based on second order spin,orbit and carrier,phonon interaction processes. We found that the sequential relaxation between bright and dark states leads to much faster exciton-spin relaxation than for strongly confining ("small") quantum dots where the dominant process stems from electron,hole exchange interaction plus hole deformation potential coupling. In addition, the fast exciton spin relaxation implies that the (exciton-bound) electron spin flip time is also much shorter than for a single electron. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Nuclear field effect on the spin dynamics of electron localized on a donor in a single quantum wellPHYSICA STATUS SOLIDI (C) - CURRENT TOPICS IN SOLID STATE PHYSICS, Issue 7 2008C. Testelin Abstract We use photoinduced Faraday rotation (PFR) in presence of an applied magnetic field to study the spin dynamics of localized electrons. The sample is a CdTe/CdMgTe quantum well (QW) of width 80 Å containing a layer of iodine donors at its center, with concentration 1011 cm,2. The spin polarization of donor-bound electrons is built via the optical polarization of donor-bound excitons, their hole spin relaxation, and their recombination. In a transverse (in-plane) magnetic field, PFR shows damped Larmor oscillations from which we deduce a 18 ns electron-spin decoherence time, and a transverse Landé factor of 1.29. In addition, for oblique optical incidence the electron-nuclei hyperfine interaction builds a nuclear spin polarization in presence of polarized electrons. This leads to the construction of an effective magnetic field, the Overhauser field, acting on the electronic spins. The Larmor frequency is then different for ,+ or ,, polarizations of the exciting light. The dependence of the phenomenon on the optical incidence allows the determination of the maximal Overhauser field, which is about 10 mT, at least two orders of magnitude weaker than for III-V semiconductors. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Mechanisms of exciton spin relaxation in quantum dotsPHYSICA STATUS SOLIDI (C) - CURRENT TOPICS IN SOLID STATE PHYSICS, Issue 5 2003E. Tsitsishvili Abstract We study the phonon-assisted relaxation processes (longitudinal relaxation time T1) within the radiative doublet of the heavy-hole-exciton in asymmetrical quantum dots. Two different relaxation mechanisms are considered: the exciton spin,acoustic phonon coupling via the strain-dependent short-range exchange interaction and the second-order quasielastic interaction between charge carriers and LO phonons. For zero magnetic fields and low temperatures, the calculated relaxation times for typical QDs are very long compared to the exciton lifetime yet they are strongly reduced in high magnetic fields (of the order of a few Tesla) and high temperatures T , 100 K. [source] Microsecond Protein Dynamics Measured by 13C, Rotating-Frame Spin RelaxationCHEMBIOCHEM, Issue 9 2005Patrik Lundström Abstract NMR spin relaxation in the rotating frame (R1,) is a unique method for atomic-resolution characterization of conformational (chemical) exchange processes occurring on the microsecond timescale. We present a rotating-frame13C,relaxation dispersion experiment for measuring conformational dynamics in uniformly13C-labeled proteins. The experiment was validated by using the E140Q mutant of the C-terminal fragment of calmodulin, which exhibits significant conformational exchange between two major conformations, as gauged from previous15N and1H relaxation studies. Consistent with previous work, the present13C, R1,experiment detects conformational-exchange dynamics throughout the protein. The average correlation time of ,,ex,=25±8 ,s is in excellent agreement with those determined previously from1H and15N R1,relaxation data: ,,ex,=19±7 and 21±3 ,s, respectively. The extracted chemical-shift differences between the exchanging states reveal significant fluctuations in dihedral angles within single regions of Ramachandran ,,, space, that were not identified from the1H and15N relaxation data. The present results underscore the advantage of using several types of nuclei to probe exchange dynamics in biomolecules. [source] |