Home About us Contact | |||
Spiking Activity (spiking + activity)
Selected AbstractsSpatio-temporal point process filtering methods with an applicationENVIRONMETRICS, Issue 3-4 2010ena Frcalová Abstract The paper deals with point processes in space and time and the problem of filtering. Real data monitoring the spiking activity of a place cell of hippocampus of a rat moving in an environment are evaluated. Two approaches to the modelling and methodology are discussed. The first one (known from literature) is based on recursive equations which enable to describe an adaptive system. Sequential Monte Carlo methods including particle filter algorithm are available for the solution. The second approach makes use of a continuous time shot-noise Cox point process model. The inference of the driving intensity leads to a nonlinear filtering problem. Parametric models support the solution by means of the Bayesian Markov chain Monte Carlo methods, moreover the Cox model enables to detect adaptivness. Model selection is discussed, numerical results are presented and interpreted. Copyright © 2009 John Wiley & Sons, Ltd. [source] Characterization of the Tetanus Toxin Model of Refractory Focal Neocortical Epilepsy in the RatEPILEPSIA, Issue 2 2005Karen E. Nilsen Summary:,Purpose: To characterize in detail a model of focal neocortical epilepsy. Methods: Chronic focal epilepsy was induced by injecting 25,50 ng of tetanus toxin or vehicle alone (controls) into the motor neocortex of rats. EEG activity was recorded from electrodes implanted at the injection site, along with facial muscle electromyographic (EMG) activity and behavioral monitoring intermittently for up to 5 months in some animals. Drug responsiveness was assessed by using the antiepileptic drugs (AEDs) diazepam (DZP) and phenytoin (PHT) delivered systemically, while 1,2,3,4-tetrahydro-6-nitro-2,3-dioxo-benzo[f]quinoxaline-7-sulfonamide (NBQX), a competitive antagonist at AMPA receptors, was administered directly to the brain to investigate the potential benefits of focal drug delivery. Results: Tetanus toxin induced mild behavioral seizures that persisted indefinitely in all animals. EEG spiking activity, occurring up to 80% of the time, correlated with clinical seizures consisting of interrupted behavioral activity, rhythmic bilateral facial twitching, and periods of abrupt motor arrest. Seizures were refractory to systemic administration of DZP and PHT. However, focal delivery of NBQX to the seizure site reversibly reduced EEG and behavioral seizure activity without detectable side effects. Conclusions: This study provides a long-term detailed characterisation of the tetanus toxin model. Spontaneous, almost continuous, well-tolerated seizures occur and persist, resembling those seen in neocortical epilepsy, including cortical myoclonus and epilepsia partialis continua. The seizures appear to be similarly resistant to conventional AEDs. The consistency, frequency, and clinical similarity of the seizures to refractory epilepsy in humans make this an ideal model for investigation of both mechanisms of seizure activity and new therapeutic approaches. [source] Comparison of spatial integration and surround suppression characteristics in spiking activity and the local field potential in macaque V1EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 3 2008M. A. Gieselmann Abstract Neurons in primary visual cortex exhibit well documented centre,surround receptive field organization, whereby the centre is dominated by excitatory influences and the surround is generally dominated by inhibitory influences. These effects have largely been established by measuring the output of neurons, i.e. their spiking activity. How excitation and inhibition are reflected in the local field potential (LFP) is little understood. As this can bear on the interpretation of human fMRI BOLD data and on our understanding of the mechanisms of local field potential oscillations, we measured spatial integration and centre,surround properties in single- and multiunit recordings of V1 in the awake fixating macaque monkey, and compared these to spectral power in different frequency bands of simultaneously recorded LFPs. We quantified centre,surround organization by determining the size of the summation and suppression area in spiking activity as well as in different frequency bands of the LFP, with the main focus on the gamma band. Gratings extending beyond the summation area usually inhibited spiking activity while the LFP gamma-band activity increased monotonically for all grating sizes. This increase was maximal for stimuli infringing upon the near classical receptive field surround, where suppression started to dominate spiking activity. Thus, suppressive influences in primary cortex can be inferred from spiking activity, but they also seem to affect specific features of gamma-band LFP activity. [source] Muscarinic control of graded persistent activity in lateral amygdala neuronsEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 11 2006Alexei V. Egorov Abstract The cholinergic system is crucially involved in several cognitive processes including attention, learning and memory. Muscarinic actions have profound effects on the intrinsic firing pattern of neurons. In principal neurons of the entorhinal cortex (EC), muscarinic receptors activate an intrinsic cation current that causes multiple self-sustained spiking activity, which represents a potential mechanism for transiently sustaining information about novel items. The amygdala appears to be important for experience-dependent learning by emotional arousal, and cholinergic muscarinic influences are essential for the amygdala-mediated modulation of memory. Here we show that principal neurons from the lateral nucleus of the amygdala (LA) can generate intrinsic graded persistent activity that is similar to EC layer V cells. This firing behavior is linked to muscarinic activation of a calcium-sensitive non-specific cation current and can be mimicked by stimulation of cholinergic afferents that originate from the nucleus basalis of Meynert (n. M). Moreover, we demonstrate that the projections from the n. M. are essential and sufficient for the control and modulation of graded firing activity in LA neurons. We found that activation of these cholinergic afferents (i) is required to maintain and to increase firing rates in a graded manner, and (ii) is sufficient for the graded increases of stable discharge rates even without an associated up-regulation of Ca2+. The induction of persistent activity was blocked by flufenamic acid or 2-APB and remained intact after Ca2+ -store depletion with thapsigargin. The internal ability of LA neurons to generate graded persistent activity could be essential for amygdala-mediated memory operations. [source] Switching between "On" and "Off" states of persistent activity in lateral entorhinal layer III neurons,HIPPOCAMPUS, Issue 4 2007Babak Tahvildari Abstract Persistent neural spiking maintains information during a working memory task when a stimulus is no longer present. During retention, this activity needs to be stable to distractors. More importantly, when retention is no longer relevant, cessation of the activity is necessary to enable processing and retention of subsequent information. Here, by means of intracellular recording with sharp microelectrode in in vitro rat brain slices, we demonstrate that single principal layer III neurons of the lateral entorhinal cortex (EC) generate persistent spiking activity with a novel ability to reliably toggle between spiking activity and a silent state. Our data indicates that in the presence of muscarinic receptor activation, persistent activity following an excitatory input may be induced and that a subsequent excitatory input can terminate this activity and cause the neuron to return to a silent state. Moreover, application of inhibitory hyperpolarizing stimuli is neither able to decrease the frequency of the persistent activity nor terminate it. The persistent activity can also be initiated and terminated by synchronized synaptic stimuli of layer II/III of the perirhinal cortex. The neuronal ability to switch "On" and "Off" persistent activity may facilitate the concurrent representation of temporally segregated information arriving in the EC and being directed toward the hippocampus. © 2007 Wiley-Liss, Inc. [source] The Chinese herbal preparation Qing Yi Tang (QYT) improves intestinal myoelectrical activity and Increases intestinal transit during acute pancreatitis in RodentsPHYTOTHERAPY RESEARCH, Issue 4 2007Yong-Yu Li Abstract The aim was to investigate alterations of intestinal motility in models of acute pancreatitis and to investigate the effects of the Chinese herbal preparation Qing Yi Tang (QYT) on these alterations. Upper gastrointestinal transit was evaluated in mice following induction of mild acute pancreatitis (MAP) using caerulein. Myoelectrical activity was recorded in rats after induction of severe acute pancreatitis (SAP) using sodium deoxycholate (SDOC). The contractility of jejunum segments was evaluated in the presence of SDOC, lipopolysaccharide (LPS) and trypsin. QYT accelerated the transit in MAP mice in a concentration dependent manner. Slow wave activity of smooth muscle in rat stomach and jejunum remained unchanged following SAP, but the spiking activity was significantly decreased, with bursts of 7.2 ± 2.6/10 min compared with 47.9 ± 13.2/10 min without SAP (p < 0.01). QYT reversed this decrease. Additionally, the amplitudes of slow waves and spikes were enhanced by QYT in SAP rats. The tension and amplitude of spontaneous contractile activity was reduced by SDOC and LPS and increased by trypsin. Gastrointestinal (GI) transit is altered by SAP but not by MAP. The Chinese herbal preparation QYT improves disturbed motility in AP by stimulating myoelectrical activity and accelerating GI transit. Copyright © 2007 John Wiley & Sons, Ltd. [source] |