Spectroscopic Approach (spectroscopic + approach)

Distribution by Scientific Domains


Selected Abstracts


Photopolymerization with microscale resolution: Influence of the physico-chemical and photonic parameters

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 11 2008
Olivier Soppera
Abstract This article is aimed at demonstrating that physicochemical parameters can be used to control the spatial extent (length, width, and shape) of polymer objects in view of micro- and nano-fabrication applications. In particular, we showed that oxygen quenching and internal filter effects could be turned to advantage to modulate the response of the material by controlling the threshold energy of polymerization and/or the shape of the light into the photopolymerizable medium. The experimental configuration used in this study is based on light-induced polymerization at the extremity of an optical fiber that produces polymer micro-objects after development. Spectroscopic approaches and polymerization threshold measurements were performed to quantitatively evaluate the influence of the physicochemical parameters on the micropatterning of photopolymerizable material. Interestingly, fluorescence that is usually regarded as a process competing with photopolymerization reaction, was used for controlling the fabrication process. By this means, it was possible to better understand the impact of a nonhomogeneous irradiation on photopolymerization process and thus, to tune the shape and the size of the final polymer objects. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3783,3794, 2008 [source]


MRI of muscular fat

MAGNETIC RESONANCE IN MEDICINE, Issue 4 2002
Fritz Schick
Abstract An MRI technique with high selectivity and sensitivity to the signal components in the chemical shift range of methylene and methyl protons of fatty acids has been developed for noninvasive assessment of muscular fat in vivo. A spoiled gradient-echo sequence with spatial-spectral excitation by six equidistant pulses with 2°-(,9°)-17°-(,17°)-9°-(,2°) and a multi-echo train (TE = 16, 36, 56, 76, 96, and 116 ms) allowed a series of images to be recorded with a receiver bandwidth of 78 Hz per pixel. SIs from phantoms with lipid contents between 0.1% and 100% were compared to those from pure water. Thirty healthy volunteers underwent fat-selective imaging of their lower leg, and parallel localized proton spectroscopy of the tibialis anterior and the soleus muscle by a single-voxel stimulated echo acquisition mode (STEAM) technique (TR = 2 s, TE = 10 ms, TM = 15 ms). Results show a high correlation (r = 0.91) between fat imaging and the spectroscopic approach in the soleus muscle, considering the percentage total fat content of musculature. The correlation coefficient was clearly lower (r = 0.55) in the tibialis anterior muscle due to signal contaminations from adjacent subcutaneous fat in the images, inhomogeneous fat distribution, and generally lower lipid content in this muscle. Applications of the new imaging technique showed marked intra- and interindividual variability in the spatial distribution of lipids in the musculature of the lower leg. No significant correlation of the muscular fat with the thickness of the subcutaneous fat layer was found. In addition, the body mass index does not appear to determine muscular fat content, except in very obese cases. Magn Reson Med 47:720,727, 2002. © 2002 Wiley-Liss, Inc. [source]


High-performance liquid chromatography/mass spectrometric and proton nuclear magnetic resonance spectroscopic studies of the transacylation and hydrolysis of the acyl glucuronides of a series of phenylacetic acids in buffer and human plasma

RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 20 2010
Elin S. Karlsson
The use of high-performance liquid chromatography/mass spectrometry (HPLC/MS) and proton nuclear magnetic resonance (1H NMR) spectroscopy for the kinetic analysis of acyl glucuronide (AG) isomerisation and hydrolysis of the 1-,- O -acyl glucuronides (1-,- O -AG) of phenylacetic acid, (R)- and (S)-,-methylphenylacetic acid and ,,,-dimethylphenylacetic acid is described and compared. Each AG was incubated in both aqueous buffer, at pH 7.4, and control human plasma at 37°C. Aliquots of these incubations, taken throughout the reaction time-course, were analysed by HPLC/MS and 1H NMR spectroscopy. In buffer, transacylation reactions predominated, with relatively little hydrolysis to the free aglycone observed. In human plasma incubations the calculated rates of reaction were much faster than for buffer and, in contrast to the observations in buffer, hydrolysis to the free aglycone was a significant contributor to the overall reaction. A diagnostic analytical methodology based on differential mass spectrometric fragmentation of 1-, -O- AGs compared to the 2-, 3- and 4-positional isomers, which enables selective determination of the former, was confirmed and applied. These findings show that HPLC/MS offers a viable alternative to the more commonly used NMR spectroscopic approach for the determination of the transacylation and hydrolysis reactions of these AGs, with the major advantage of having the capability to do so in a complex biological matrix such as plasma. Copyright © 2010 John Wiley & Sons, Ltd. [source]


Primary events in dim light vision: a chemical and spectroscopic approach toward understanding protein/chromophore interactions in rhodopsin

THE CHEMICAL RECORD, Issue 2 2004
Nathan Fishkin
The visual pigment rhodopsin (bovine) is a 40,kDa protein consisting of 348 amino acids, and is a prototypical member of the subfamily A of G protein-coupled receptors (GPCRs). This remarkably efficient light-activated protein (quantum yield = 0.67) binds the chromophore 11- cis -retinal covalently by attachment to Lys296 through a protonated Schiff base. The 11- cis geometry of the retinylidene chromophore keeps the partially active opsin protein locked in its inactive state (inverse agonist). Several retinal analogs with defined configurations and stereochemistry have been incorporated into the apoprotein to give rhodopsin analogs. These incorporation results along with the spectroscopic properties of the rhodopsin analogs clarify the mode of entry of the chromophore into the apoprotein and the biologically relevant conformation of the chromophore in the rhodopsin binding site. In addition, difference UV, CD, and photoaffinity labeling studies with a 3-diazo-4-oxo analog of 11- cis -retinal have been used to chart the movement of the retinylidene chromophore through the various intermediate stages of visual transduction. © 2004 The Japan Chemical Journal Forum and Wiley Periodicals, Inc. Chem Rec 4: 120,135; 2004: Published online in Wiley InterScience (www.interscience.wiley.com) DOI 10.1002/tcr.20000 [source]


Elucidation of the gating of the GIRK channel using a spectroscopic approach

THE JOURNAL OF PHYSIOLOGY, Issue 22 2009
Adi Raveh
The traditional view of G protein-coupled receptor (GPCR)-mediated signalling puts the players in this signalling cascade, namely the GPCR, the G protein and its effector, as individual components in space, where the signalling specificity is obtained mainly by the interaction of the GPCR and the G, subunits of the G protein. A question is then raised as to how fidelity in receptor signalling is achieved, given that many systems use the same components of the G protein signalling machinery. One possible mechanism for obtaining the specific flow of the downstream signals, from the activated G protein to its specific effector target, in a timely manner, is compartmentalization, a spatial arrangement of the complex in a rather restricted space. Here we review our recent findings related to these issues, using the G protein-coupled potassium channel (GIRK) as a model effector and fluorescence-based approaches to reveal how the signalling complex is arranged and how the G protein exerts its action to activate the GIRK channel in intact cells. [source]


Combined Fourier transform infrared and Raman spectroscopic approach for identification of multidrug resistance phenotype in cancer cell lines

BIOPOLYMERS, Issue 5 2006
C. Murali Krishna
Abstract Cancer cells escape cytotoxic effects of anticancer drugs by a process known as multidrug resistance (MDR). Identification of cell status by less time-consuming methods can be extremely useful in patient management and treatment. This study aims at evaluating the potentials of vibrational spectroscopic methods to perform cell typing and to differentiate between sensitive and resistant human cancer cell lines, in particular those that exhibit the MDR phenotype. Micro-Raman and Fourier transform infrared (FTIR) spectra have been acquired from the sensitive promyelocytic HL60 leukemia cell line and two of its subclones resistant to doxorubicin (HL60/DOX) and daunorubicin (HL60/DNR), and from the sensitive MCF7 breast cancer cell line and its MDR counterpart resistant to verapamil (MCF7/VP). Principal components analysis (PCA) was employed for spectral comparison and classification. Our data show that cell typing was feasible with both methods, giving two distinct clusters for HL60- and MCF7-sensitive cells. In addition, phenotyping of HL60 cells, i.e., discriminating between the sensitive and MDR phenotypes, was attempted by both methods. FTIR could not only delineate between the sensitive and resistant HL60 cells, but also gave two distinct clusters for the resistant cells, which required a two-step procedure with Raman spectra. In the case of MCF7 cell lines, both the sensitive and resistant phenotypes could be differentiated very efficiently by PCA analysis of their FTIR and Raman point spectra. These results indicate the prospective applicability of FTIR and micro-Raman approaches in the differentiation of cell types as well as characterization of the cell status, such as the MDR phenotype exhibited in resistant leukemia cell lines like HL60 and MCF7. © 2006 Wiley Periodicals, Inc. Biopolymers 82: 462,470, 2006 This article was originally published online as an accepted preprint. The "Published Online" date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com [source]


GABAergic phthalide dimers from Angelica sinensis (Oliv.) Diels

PHYTOCHEMICAL ANALYSIS, Issue 6 2006
Shixin Deng
Abstract The methanol extract of Angelica sinensis (Oliv.) Diels roots (Dang Gui) has been shown to exhibit competitive binding to the GABAa receptor, suggesting the presence of GABAergic ligands. Chromatographic fractionation of the methanol extract led to the isolation of two GABAergic dimeric phthalides 1 and 2. Gelispirolide (1) was elucidated as a new phthalide dimer composed of a Z -ligustilide and a Z -butylidenephthalide unit on the basis of spectroscopic approaches including one- and two-dimensional NMR, HRESIMS and HRESIMS-MS. Compound 2 was identified as the known dimeric phthalide, riligustilide, by comparison of its spectroscopic data with literature values. Its dimeric linkage and stereochemistry were ascertained by a single crystal X-ray diffraction experiment. Both dimers 1 and 2 were found to be active in an in vitro GABAa receptor-binding assay with IC50 values of 29 and 24 µm, respectively. Copyright © 2006 John Wiley & Sons, Ltd. [source]


4133: Dry eye and human tear lipid compositional, conformational and functional relationships using spectroscopy

ACTA OPHTHALMOLOGICA, Issue 2010
D BORCHMAN
Purpose Knowledge of the relationships among composition, conformation and function of tear film lipids could facilitate the development of therapies to alleviate symptoms related to meibomian gland dysfunction (MGD) and to diagnose the disease. Toward this goal, we used spectroscopic approaches to assess tear lipid composition and conformation relationships with age, sex and meibomian gland dysfunction. Methods Spectra of meibum from 41 patients diagnosed with MGD (Md) and 27 normal donors (Mn) were acquired. Results 1H-NMR spectra showed cholesterol esters were found to decrease by 21% with MGD. The number of double bonds/ester increased with age and MGD which indirectly relates to tear film stability. With age, the amount of CH2 groups increased twice as much as the C=C moieties and the C=C/CH2 and CH3/CH2 ratios were related to lipid order and indirectly related to meibum delivery. With the use of MALDI-TOF MS, we quantified and identified lipid components in Mn and Md such as cholesterol, hydrocarbons and wax esters with a sensitivity of 9 pmoles for each analyte. Sixty-nine of the 189 resolved peaks were unique to Md spectra compared to Mn spectra and were not due to waxes. Extra peaks in Md spectra may arise from increased lipid synthesis, bacteria or cellular debris. Conclusion It is reasonable that as the lipids become more ordered and more viscous with Md, less lipid flows out of the meibomian gland orifice and more casual lipid is present on the lid margin. The age- and disease-related changes in the physical and chemical characteristics of meibum lipids suggest that the C=C/CH2 and CH3/CH2 ratios may be more important than quantity in relation to tear film stability. [source]