Spectral Variation (spectral + variation)

Distribution by Scientific Domains


Selected Abstracts


DNA tertiary structure and changes in DNA supercoiling upon interaction with ethidium bromide and gyrase monitored by UV resonance Raman spectroscopy

JOURNAL OF RAMAN SPECTROSCOPY, Issue 10 2007
U. Neugebauer
Abstract The tertiary structure of DNA is important for many of its biological functions. In this work supercoiled and relaxed forms of purified plasmid DNA pBR322 in dilute aqueous solutions are investigated by means of UVRR spectroscopy to assess changes in B-DNA conformation. Spectral variation in the CO and exocyclic NH2 vibration above 1600 cm,1 indicate changes in hydrogen bonding. A minor shift of the CN stretching mode of adenosine and guanosine at 1487 cm,1 supports these findings. Changes in ribose conformation are visible in the spectral region 1320,1360 cm,1 by vibrational coupling of the ribose pucker to the vibrations of the purine and pyrimidine bases. The intercalating phenanthridinium drug ethidium bromide is known to reduce the negative supercoiling of DNA. This change in DNA topology is reflected in variations of the UVRR marker bands of DNA identified above. Principal component analysis helped to extract the features of interest from the complex spectra of the intercalation complex. Within the bacterial cells the change in DNA topology is achieved by the action of topoisomerases. In this work, the DNA-binding subunit GyrA of the enzyme gyrase was extracted from E. coli and applied to relaxed and supercoiled pBR322. The observed changes in the vibrational signature of the relaxed DNA in the presence of GyrA indicate a change of topology towards the supercoiled form. With already supercoiled DNA no further change in DNA topology is observed. Copyright © 2007 John Wiley & Sons, Ltd. [source]


Tikhonov regularization in standardized and general form for multivariate calibration with application towards removing unwanted spectral artifacts

JOURNAL OF CHEMOMETRICS, Issue 1-2 2006
Forrest Stout
Abstract Tikhonov regularization (TR) is an approach to form a multivariate calibration model for y,=,Xb. It includes a regulation operator matrix L that is usually set to the identity matrix I and in this situation, TR is said to operate in standard form and is the same as ridge regression (RR). Alternatively, TR can function in general form with L,,,I where L is used to remove unwanted spectral artifacts. To simplify the computations for TR in general form, a standardization process can be used on X and y to transform the problem into TR in standard form and a RR algorithm can now be used. The calculated regression vector in standardized space must be back-transformed to the general form which can now be applied to spectra that have not been standardized. The calibration model building methods of principal component regression (PCR), partial least squares (PLS) and others can also be implemented with the standardized X and y. Regardless of the calibration method, armed with y, X and L, a regression vector is sought that can correct for irrelevant spectral variation in predicting y. In this study, L is set to various derivative operators to obtain smoothed TR, PCR and PLS regression vectors in order to generate models robust to noise and/or temperature effects. Results of this smoothing process are examined for spectral data without excessive noise or other artifacts, spectral data with additional noise added and spectral data exhibiting temperature-induced peak shifts. When the noise level is small, derivative operator smoothing was found to slightly degrade the root mean square error of validation (RMSEV) as well as the prediction variance indicator represented by the regression vector 2-norm thereby deteriorating the model harmony (bias/variance tradeoff). The effective rank (ER) (parsimony) was found to decrease with smoothing and in doing so; a harmony/parsimony tradeoff is formed. For the temperature-affected data and some of the noisy data, derivative operator smoothing decreases the RMSEV, but at a cost of greater values for . The ER was found to increase and hence, the parsimony degraded. A simulated data set from a previous study that used TR in general form was reexamined. In the present study, the standardization process is used with L set to the spectral noise structure to eliminate undesirable spectral regions (wavelength selection) and TR, PCR and PLS are evaluated. There was a significant decrease in bias at a sacrifice to variance with wavelength selection and the parsimony essentially remains the same. This paper includes discussion on the utility of using TR to remove other undesired spectral patterns resulting from chemical, environmental and/or instrumental influences. The discussion also incorporates using TR as a method for calibration transfer. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Detection of Sublethal Thermal Injury in Salmonella enterica Serotype Typhimurium and Listeria monocytogenes Using Fourier Transform Infrared (FT-IR) Spectroscopy (4000 to 600 cm,1)

JOURNAL OF FOOD SCIENCE, Issue 2 2008
H.M. Al-Qadiri
ABSTRACT:, Fourier transform infrared (FT-IR) spectroscopy (4000 to 600 cm,1) was utilized to detect sublethally heat-injured microorganisms: Salmonella enterica serotype Typhimurium ATCC 14028, a Gram-negative bacterium, and Listeria monocytogenes ATCC 19113, a Gram-positive bacterium. A range of heat treatments (N= 2) at 60 °C were evaluated: 0D (control), 2D, 4D, 6D, and 8D using a D60 °C (S. enterica serotype Typhimurium ATCC 14028 = 0.30 min, L. monocytogenes ATCC 19113 = 0.43 min). The mechanism of cell injury appeared to be different for Gram-negative and Gram-positive microbes as observed from differences in the 2nd derivative transformations and loadings plot of bacterial spectra following heat treatment. The loadings for PC1 and PC2 confirmed that the amide I and amide II bands were the major contribution to spectral variation, with relatively small contributions from C-H deformations, the antisymmetric P==O stretching modes of the phosphodiester nucleic acid backbone, and the C-O-C stretching modes of polysaccharides. Using soft independent modeling of class analogy (SIMCA), the extent of injury could be predicted correctly at least 83% of the time. Partial least squares (PLS) calibration analysis was constructed using 5 latent variables for predicting the bacterial counts for survivors of the different heat treatments and yielded a high correlation coefficient (R= 0.97 [S. enterica serotype Typhimurium] and 0.98 [L. monocytogenes]) and a standard error of prediction (SEP= 0.51 [S. enterica serotype Typhimurium] and 0.39 log10 CFU/mL [L. monocytogenes]), indicating that the degree of heat injury could be predicted. [source]


Wide area illumination Raman scheme for simple and nondestructive discrimination of seawater cultured pearls

JOURNAL OF RAMAN SPECTROSCOPY, Issue 12 2009
Seok Chan Park
Abstract Raman spectroscopy, along with discriminant partial least squares (PLS), was successfully used to discriminate among three different groups of cultured pearls (fresh water, Akoya and South seawater). The discrimination between Akoya and South seawater pearls using XRF (X-ray fluorescence), one of the most frequently adopted analytical methods in pearl analysis, has been especially difficult owing to their similar mineral compositions. The selective Raman features helped in effectively discriminating between these two pearl groups. The difference in the intensities of the CaCO3 bands of Akoya and South seawater pearls provided a valuable clue. Along with the selective Raman feature, a reproducible Raman spectral collection achieved using a wide area illumination (WAI) scheme played an important role in the determination of the pearl groups, although the pearls were hard-surfaced, round, solid samples of different sizes and surface shapes. Unwanted spectral variation originating from sensitivity to sample placement relative to the focal plane and from unsuccessful sample representation due to the probing of a localized area, factors that could possibly deteriorate Raman reproducibility, were substantially lessened using the WAI scheme. ATR (attenuated total reflection) IR spectroscopy requiring direct contact with the pearl could be inadequate for discrimination or classification where large numbers of repeating and reproducible measurements are required. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Reflectance spectra of iron meteorites: Implications for spectral identification of their parent bodies

METEORITICS & PLANETARY SCIENCE, Issue 2 2010
Edward A. CLOUTIS
Powder spectra are invariably red-sloped over this wavelength interval and have a narrow range of visible albedos (approximately 10,15% at 0.56 ,m). Metal (Fe:Ni) compositional variations have no systematic effect on the powder spectra, increasing grain size results in more red-sloped spectra, and changes in viewing geometry have variable effects on overall reflectance and spectral slope. Roughened metal slab spectra have a wider, and higher, range of visible albedos than powders (22,74% at 0.56 ,m), and are also red-sloped. Smoother slabs exhibit greater differences from iron meteorite powder spectra, exhibiting wider variations in overall reflectance, spectral slopes, and spectral shapes. No unique spectral parameters exist that allow for powder and slab spectra to be fully separated in all cases. Spectral differences between slabs and powders can be used to constrain possible surface properties, and causes of rotational spectral variations, of M-asteroids. The magnitude of spectral variations between M-asteroids and rotational and spectral variability does not necessarily imply a dramatic change in surface properties, as the differences in albedo and/or spectral slope can be accommodated by modest changes in grain size (for powders), small changes in surface roughness (for slabs), or variations in viewing geometry. Since metal powders exhibit much less spectral variability than slabs, M-asteroid spectral variability requires larger changes in either powder properties or viewing geometry than for slabs for a given degree of spectral variation. [source]


Vesta, Vestoids, and the howardite, eucrite, diogenite group: Relationships and the origin of spectral differences

METEORITICS & PLANETARY SCIENCE, Issue 6 2001
T. H. Burbine
All of the measured small asteroids (except for 2579 Spartacus) have reflectance spectra consistent with surface compositions similar to eucrites and howardites and consistent with all being derived from Vesta. None of the observed asteroids have spectra similar to diogenites. We find no spectral distinction between the 15 objects tabulated as members of the Vesta dynamical family and 6 of the 7 sampled "non-family" members that reside just outside the semi-major axis (a), eccentricity (e), and inclination (i) region of the family. The spectral consistency and close orbital (a-e-i) match of these "non-family" objects to Vesta and the Vesta family imply that the true bounds of the family extend beyond the subjective cut-off for membership. Asteroid 2579 Spartacus has a spectrum consistent with a mixture of eucritic material and olivine. Spartacus could contain olivine-rich material from Vesta's mantle or may be unrelated to Vesta altogether. Laboratory measurements of the spectra of eucrites show that samples having nearly identical compositions can display a wide range of spectral slopes. Finer particle sizes lead to an increase in the slope, which is usually referred to as reddening. This range of spectral variation for the best-known meteoritic analogs to the Vestoids, regardless of whether they are actually related to each other, suggests that the extremely red spectral slopes for some Vestoids can be explained by very fine-grained eucritic material on their surfaces. [source]


Metabolomic studies of human lung carcinoma cell lines using in vitro1H NMR of whole cells and cellular extracts,

NMR IN BIOMEDICINE, Issue 8 2008
M. Gottschalk
Abstract We report principal component analysis (PCA) of 1H NMR spectra recorded for a group of human lung carcinoma cell lines in culture and 1H NMR analysis of extracts from the same samples. The samples studied were cells of lung tumour origin with different chemotherapy drug resistance patterns. For whole cells, it was found that the statistically significant causes of spectral variation were an increase in the choline and a decrease in the methylene mobile lipid 1H resonance intensities, which correlate with our knowledge of the level of resistance displayed by the different cells. Similarly, in the 1H NMR spectra of the aqueous and lipophilic extracts, significant quantitative differences in the metabolite distributions were apparent, which are consistent with the PCA results. Copyright © 2008 John Wiley & Sons, Ltd. [source]


An Hg2+ -Gated Chiral Molecular Switch Created by Using Binaphthalene Molecules with Two Anthracene Units and Two 1,3-Dithiole-2-thione (1,3-Dithiole-2-one) Units

CHEMISTRY - A EUROPEAN JOURNAL, Issue 18 2008
Cheng Wang
Abstract By integrating the features of anthracene, 1,3-dithiole-2-thione, and binaphthalene units, (S)- 1 and its analogue (S)- 2, which contains two 1,3-dithiole-2-one units instead of 1,3-dithiole-2-thione, were studied for creating a new molecular regulation system and building a gated chiral molecular switch. The results show that the photodimerization is controlled by the remote functional-group transformation of CS into CO, thus providing an elegant example of molecular regulation. The photodimerization of two anthracene units induces circular dichroism (CD) spectral variation. Overall, the CD spectrum can be remotely modulated by Hg2+ in (S)- 1, which leads to an Hg2+ -gated chiral molecular switch. [source]


FT-IR spectroscopy in diagnosis of diabetes in rat animal model

JOURNAL OF BIOPHOTONICS, Issue 8-9 2010
Feride Severcan
Abstract In recent years, Fourier Transform Infrared (FT-IR) spectroscopy has had an increasingly important role in the field of pathology and diagnosis of disease states. In the current study, FT-IR spectroscopy together with cluster analysis were used as a diagnostic tool in the discrimination of diabetic samples from control ones in rat kidney plasma membrane apical sides (brush-border membranes), liver microsomal membranes and Extensor digitorum longus (EDL) and Soleus (SOL) skeletal muscle tissues. A variety of alterations in the spectral parameters, such as frequency and signal intensity/area was observed in diabetic tissues and membranes compared to the control samples. Based on these spectral variations, using cluster analysis successful differentiation between diabetic and control groups was obtained in different spectral regions. The results of this current study further revealed the power and sensitivity of FT-IR spectroscopy in precise and automated diagnosis of diabetes. (© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Reflectance spectra of iron meteorites: Implications for spectral identification of their parent bodies

METEORITICS & PLANETARY SCIENCE, Issue 2 2010
Edward A. CLOUTIS
Powder spectra are invariably red-sloped over this wavelength interval and have a narrow range of visible albedos (approximately 10,15% at 0.56 ,m). Metal (Fe:Ni) compositional variations have no systematic effect on the powder spectra, increasing grain size results in more red-sloped spectra, and changes in viewing geometry have variable effects on overall reflectance and spectral slope. Roughened metal slab spectra have a wider, and higher, range of visible albedos than powders (22,74% at 0.56 ,m), and are also red-sloped. Smoother slabs exhibit greater differences from iron meteorite powder spectra, exhibiting wider variations in overall reflectance, spectral slopes, and spectral shapes. No unique spectral parameters exist that allow for powder and slab spectra to be fully separated in all cases. Spectral differences between slabs and powders can be used to constrain possible surface properties, and causes of rotational spectral variations, of M-asteroids. The magnitude of spectral variations between M-asteroids and rotational and spectral variability does not necessarily imply a dramatic change in surface properties, as the differences in albedo and/or spectral slope can be accommodated by modest changes in grain size (for powders), small changes in surface roughness (for slabs), or variations in viewing geometry. Since metal powders exhibit much less spectral variability than slabs, M-asteroid spectral variability requires larger changes in either powder properties or viewing geometry than for slabs for a given degree of spectral variation. [source]


Chandra monitoring observations of the ultraluminous X-ray source NGC 5204 X-1

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 4 2006
T. P. Roberts
ABSTRACT We report the results of a two-month campaign conducted with the Chandra X-ray observatory to monitor the ultraluminous X-ray source (ULX) NGC 5204 X-1. This was composed of a 50-ks observation, followed by ten 5-ks follow-ups spaced initially at ,3, then at ,10-d intervals. The ULX flux is seen to vary by factors ,5 on time-scales of a few days, but no strong variability is seen on time-scales shorter than an hour. There is no evidence for a periodic signal in the X-ray data. An examination of the X-ray colour variations over the period of the campaign shows the ULX emission consistently becomes spectrally harder as its flux increases. The X-ray spectrum from the 50-ks observation can be fitted by a number of disparate spectral models, all of which describe a smooth continuum with, unusually for a ULX, a broad emission feature evident at 0.96 keV. The spectral variations, both within the 50-ks observation and over the course of the whole campaign, can then be explained solely by variations in the continuum component. In the context of an optically thick corona model (as found in other recent results for ULXs) the spectral variations can be explained by the heating of the corona as the luminosity of the ULX increases, consistent with the behaviour of at least one Galactic black hole system in the strongly Comptonized very high state. We find no new evidence supporting the presence of an intermediate-mass black hole in this ULX. [source]


Characteristics of amplified spontaneous emission of high indium content InGaN/GaN quantum wells with various silicon doping conditions

PHYSICA STATUS SOLIDI (C) - CURRENT TOPICS IN SOLID STATE PHYSICS, Issue 7 2003
Yung-Chen Cheng
Abstract We compared the temperature dependent spectral variations of the amplified spontaneous emission (ASE) between InGaN/GaN quantum well samples of no doping, well doping, and barrier doping of silicon. The comparisons were particularly made between two series of samples with a low and a high indium content. The results show that a multi-peak ASE spectral feature and a low energy stimulated emission peak, existing at the photoluminescence shoulder, could be observed only in the high-indium-content, barrier-doped sample. Such results are supposed to originate from the formation of quantum dots of various sizes, concentrations, and shapes under the condition of barrier doping in the sample. (© 2003 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Experimental solar spectral irradiance until 2500,nm: results and influence on the PV conversion of different materials

PROGRESS IN PHOTOVOLTAICS: RESEARCH & APPLICATIONS, Issue 4 2007
J. J. Pérez-López
Abstract In this work, results are presented concerning solar spectral irradiance measurements performed in Madrid in the wavelength range 250,2500,nm, that is, extending the spectral range far away from the wavelengths where PV semiconductors are active. These data were obtained considering a horizontal receiver surface during selected clear days covering the four seasons of the year. PV materials having different spectral responses (m-Si, a-Si, CIGS, CdTe) have been considered to calculate spectral factors (SF) taking as reference the standard solar spectrum AM1.5 defined in standard IEC 60904-3. From these SFs, the influence of natural solar spectral variations in PV conversion has been established. It is shown, for example, that PV technologies based on a-Si are highly favored, from the spectral point of view, in spring,summer compared to other technologies having broader spectral responses, which are more favored in autumn,winter. From the experimental measured solar spectra, we have calculated Weighed Solar Spectra (WSS) corresponding to the four seasons of the year and also to the whole year. The WSS represents, for a certain period of time, the solar spectrum weighed over the irradiance level. SFs have been calculated for different WSSs showing spectral gains for the four PV materials during almost the full year. Otherwise, it is also shown in this work how the near-IR part of the solar spectrum affects the evaluation of the solar resource as a whole when reference solar cells made of different PV materials are used. For typical m-Si, a-Si, CIGS, and CdTe solar cells, the ratio of Isc over global irradiance is not constant along a given day showing variations that depend on the season and on the PV material considered. © 2006 John Wiley & Sons, Ltd. [source]


The exceptional Herbig Ae star HD 101412: The first detection of resolved magnetically split lines and the presence of chemical spots in a Herbig star,

ASTRONOMISCHE NACHRICHTEN, Issue 4 2010
S. Hubrig
Abstract In our previous search for magnetic fields in Herbig Ae stars, we pointed out that HD 101412 possesses the strongest magnetic field among the Herbig Ae stars and hence is of special interest for follow-up studies of magnetism among young pre-main-sequence stars. We obtained high-resolution, high signal-to-noise UVES and a few lower quality HARPS spectra revealing the presence of resolved magnetically split lines. HD 101412 is the first Herbig Ae star for which the rotational Doppler effect was found to be small in comparison to the magnetic splitting and several spectral lines observed in unpolarized light at high dispersion are resolved into magnetically split components. The measured mean magnetic field modulus varies from 2.5 to 3.5kG, while the mean quadratic field was found to vary in the range of 3.5 to 4.8 kG. To determine the period of variations, we used radial velocity, equivalent width, line width, and line asymmetry measurements of variable spectral lines of several elements, as well as magnetic field measurements. The period determination was done using the Lomb-Scargle method. The most pronounced variability was detected for spectral lines of He I and the iron peak elements, whereas the spectral lines of CNO elements are only slightly variable. From spectral variations and magnetic field measurements we derived a potential rotation period Prot = 13.86 d, which has to be proven in future studies with a larger number of observations. It is the first time that the presence of element spots is detected on the surface of a Herbig Ae/Be star. Our previous study of Herbig Ae stars revealed a trend towards stronger magnetic fields for younger Herbig Ae stars, confirmed by statistical tests. This is in contrast to a few other (non-statistical) studies claiming that magnetic Herbig Ae stars are progenitors of the magnetic Ap stars. New developments in MHD theory show that the measured magnetic field strengths are compatible with a current-driven instability of toroidal fields generated by differential rotation in the stellar interior. This explanation for magnetic intermediate-mass stars could be an alternative to a frozen-in fossil field (© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]