Home About us Contact | |||
Spectral Slope (spectral + slope)
Selected AbstractsReflectance spectra of iron meteorites: Implications for spectral identification of their parent bodiesMETEORITICS & PLANETARY SCIENCE, Issue 2 2010Edward A. CLOUTIS Powder spectra are invariably red-sloped over this wavelength interval and have a narrow range of visible albedos (approximately 10,15% at 0.56 ,m). Metal (Fe:Ni) compositional variations have no systematic effect on the powder spectra, increasing grain size results in more red-sloped spectra, and changes in viewing geometry have variable effects on overall reflectance and spectral slope. Roughened metal slab spectra have a wider, and higher, range of visible albedos than powders (22,74% at 0.56 ,m), and are also red-sloped. Smoother slabs exhibit greater differences from iron meteorite powder spectra, exhibiting wider variations in overall reflectance, spectral slopes, and spectral shapes. No unique spectral parameters exist that allow for powder and slab spectra to be fully separated in all cases. Spectral differences between slabs and powders can be used to constrain possible surface properties, and causes of rotational spectral variations, of M-asteroids. The magnitude of spectral variations between M-asteroids and rotational and spectral variability does not necessarily imply a dramatic change in surface properties, as the differences in albedo and/or spectral slope can be accommodated by modest changes in grain size (for powders), small changes in surface roughness (for slabs), or variations in viewing geometry. Since metal powders exhibit much less spectral variability than slabs, M-asteroid spectral variability requires larger changes in either powder properties or viewing geometry than for slabs for a given degree of spectral variation. [source] XMM,Newton observations of GB B1428+4217: confirmation of intrinsic soft X-ray absorptionMONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 4 2004M. A. Worsley ABSTRACT We report the results of XMM,Newton observations of the X-ray bright, radio-loud blazar GB B1428+4217 at a redshift of z= 4.72. We confirm the presence of soft X-ray spectral flattening at energies ,0.7 keV as reported in previous ROSAT and BeppoSAX observations. At hard X-ray energies, the spectrum is consistent with a power law, although we find that the spectral slope varied between both XMM,Newton observations and it is also significantly different from that reported previously. Whilst we cannot rule out intrinsic cold absorption to explain the spectral depression, we favour a dust-free warm absorber. Cold absorption requires a column density ,1.4,1.6 × 1022 cm,2, whilst a warm absorber could have up to ,1023 cm,2 and an ionization parameter ,102. The spectrum of GB B1428+4217 shows remarkable parallels with that of the z= 4.4 blazar PMN J0525,3343, in which the available evidence is also most consistent with a warm absorber model. [source] Photobleaching of Dissolved Organic Material from a Tidal Marsh-Estuarine System of the Chesapeake Bay,PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 4 2007Maria Tzortziou ABSTRACT Wetlands and tidal marshes in the Rhode River estuary of the Chesapeake Bay act as important sources of dissolved organic carbon and strongly absorbing dissolved organic matter (DOM) for adjacent estuarine waters. The effects of solar exposure on the photochemical degradation of colored DOM (CDOM) were examined for material derived from different sources (estuarine and freshwater parts of the Rhode River, sub-watershed stream, marshes) in this estuarine ecosystem. Consistent with changes in fluorescence emission, absorption loss upon exposure to different portions of the solar spectrum (i.e. different long-pass cut-off filters) occurred across the entire spectrum but the wavelength of maximum photobleaching decreased as the cut-off wavelength of the filter decreased. Our results illustrate that solar exposure can cause either an increase or a decrease in the CDOM absorption spectral slope, SCDOM, depending on the spectral quality of irradiation and, thus, on the parameters (e.g. atmospheric composition, concentration of UV-absorbing water constituents) that affect the spectral characteristics of the light to which CDOM is exposed. We derived a simple spectral model for describing the effects of solar exposure on CDOM optical quality. The model accurately, and consistently, predicted the observed dependence of CDOM photobleaching on the spectral quality of solar exposure. [source] The local ETKF and SKEB: Upgrades to the MOGREPS short-range ensemble prediction systemTHE QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, Issue 640 2009Neill E. Bowler Abstract The Met Office has been routinely running a short-range global and regional ensemble prediction system (EPS) since the summer of 2005. This article describes a major upgrade to the global ensemble, which affected both the initial condition and model uncertainty perturbations applied in that ensemble. The change to the initial condition perturbations is to allow localization within the ensemble transform Kalman filter (ETKF). This enables better specification of the ensemble spread as a function of location around the globe. The change to the model uncertainty perturbations is the addition of a stochastic kinetic energy backscatter scheme (SKEB). This adds vorticity perturbations to the forecast in order to counteract the damping of small-scale features introduced by the semi-Lagrangian advection scheme. Verification of ensemble forecasts is presented for the global ensemble system. It is shown that the localization of the ETKF gives a distribution of the spread as a function of latitude that better matches the forecast error of the ensemble mean. The SKEB scheme has a substantial effect on the power spectrum of the kinetic energy, and with the scheme a shallowing of the spectral slope is seen in the tail. A k,5/3 slope is seen at wavelengths shorter than 1000 km and this better agrees with the observed spectrum. The local ETKF significantly improves forecasts at all lead times over a number of variables. The SKEB scheme increases the rate of growth of ensemble spread in some variables, and improves forecast skill at short lead times. ©Crown Copyright 2009. Reproduced with the permission of HMSO. Published by John Wiley & Sons Ltd. [source] Reflectance spectra of iron meteorites: Implications for spectral identification of their parent bodiesMETEORITICS & PLANETARY SCIENCE, Issue 2 2010Edward A. CLOUTIS Powder spectra are invariably red-sloped over this wavelength interval and have a narrow range of visible albedos (approximately 10,15% at 0.56 ,m). Metal (Fe:Ni) compositional variations have no systematic effect on the powder spectra, increasing grain size results in more red-sloped spectra, and changes in viewing geometry have variable effects on overall reflectance and spectral slope. Roughened metal slab spectra have a wider, and higher, range of visible albedos than powders (22,74% at 0.56 ,m), and are also red-sloped. Smoother slabs exhibit greater differences from iron meteorite powder spectra, exhibiting wider variations in overall reflectance, spectral slopes, and spectral shapes. No unique spectral parameters exist that allow for powder and slab spectra to be fully separated in all cases. Spectral differences between slabs and powders can be used to constrain possible surface properties, and causes of rotational spectral variations, of M-asteroids. The magnitude of spectral variations between M-asteroids and rotational and spectral variability does not necessarily imply a dramatic change in surface properties, as the differences in albedo and/or spectral slope can be accommodated by modest changes in grain size (for powders), small changes in surface roughness (for slabs), or variations in viewing geometry. Since metal powders exhibit much less spectral variability than slabs, M-asteroid spectral variability requires larger changes in either powder properties or viewing geometry than for slabs for a given degree of spectral variation. [source] Vesta, Vestoids, and the howardite, eucrite, diogenite group: Relationships and the origin of spectral differencesMETEORITICS & PLANETARY SCIENCE, Issue 6 2001T. H. Burbine All of the measured small asteroids (except for 2579 Spartacus) have reflectance spectra consistent with surface compositions similar to eucrites and howardites and consistent with all being derived from Vesta. None of the observed asteroids have spectra similar to diogenites. We find no spectral distinction between the 15 objects tabulated as members of the Vesta dynamical family and 6 of the 7 sampled "non-family" members that reside just outside the semi-major axis (a), eccentricity (e), and inclination (i) region of the family. The spectral consistency and close orbital (a-e-i) match of these "non-family" objects to Vesta and the Vesta family imply that the true bounds of the family extend beyond the subjective cut-off for membership. Asteroid 2579 Spartacus has a spectrum consistent with a mixture of eucritic material and olivine. Spartacus could contain olivine-rich material from Vesta's mantle or may be unrelated to Vesta altogether. Laboratory measurements of the spectra of eucrites show that samples having nearly identical compositions can display a wide range of spectral slopes. Finer particle sizes lead to an increase in the slope, which is usually referred to as reddening. This range of spectral variation for the best-known meteoritic analogs to the Vestoids, regardless of whether they are actually related to each other, suggests that the extremely red spectral slopes for some Vestoids can be explained by very fine-grained eucritic material on their surfaces. [source] |