Spectral Comparison (spectral + comparison)

Distribution by Scientific Domains


Selected Abstracts


Isothiocyanato Boron Dipyrromethenes,The First BODIPY Analogues of Fluorescein Isothiocyanate

PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 3 2006
Nela Malatesti
ABSTRACT Two boron complexes of 5-phenyldipyrromethenes bearing isothiocyanate groups on the phenyl ring have been synthesized for the first time. The utility of these new fluorescence probes for labeling biologically relevant proteins is demonstrated on two monoclonal antibodies that bind to antigens overexpressed on cancer cells. Spectral comparison of the two structures reveals significant photophysical differences, including bathochromically shifted excitation and emission bands, increased molar absorptivity and a large increase in fluorescence quantum yield of approximately 10 times. Differences in photophysical parameters are linked to hindered rotation of the phenyl ring in one of the probes. [source]


Quick Screening of Crystal Methamphetamine/Methyl Sulfone Exhibits by Raman Spectroscopy

JOURNAL OF FORENSIC SCIENCES, Issue 4 2010
Robert G. Weston M.Sc.
Abstract:, The analysis of mixtures of "crystal meth" (usually comprised of methyl sulfone [MS] and methamphetamine [MA]) by gas chromatography-mass spectrometry (GCMS) is routine in many forensic drug laboratories. The utilization of Raman spectroscopy for the identification of such mixtures quickly and without the need for a separation technique is discussed. Samples were dissolved in water and Raman spectra of the resulting aqueous solutions were collected. By comparing these spectra to spectra of methylsulfone and MA mixtures of known composition, an indication of the composition of the sample can be obtained in only a few minutes. This spectral comparison also can be used as a semi-quantitative analysis of MA concentrations in such exhibits. [source]


Combined Fourier transform infrared and Raman spectroscopic approach for identification of multidrug resistance phenotype in cancer cell lines

BIOPOLYMERS, Issue 5 2006
C. Murali Krishna
Abstract Cancer cells escape cytotoxic effects of anticancer drugs by a process known as multidrug resistance (MDR). Identification of cell status by less time-consuming methods can be extremely useful in patient management and treatment. This study aims at evaluating the potentials of vibrational spectroscopic methods to perform cell typing and to differentiate between sensitive and resistant human cancer cell lines, in particular those that exhibit the MDR phenotype. Micro-Raman and Fourier transform infrared (FTIR) spectra have been acquired from the sensitive promyelocytic HL60 leukemia cell line and two of its subclones resistant to doxorubicin (HL60/DOX) and daunorubicin (HL60/DNR), and from the sensitive MCF7 breast cancer cell line and its MDR counterpart resistant to verapamil (MCF7/VP). Principal components analysis (PCA) was employed for spectral comparison and classification. Our data show that cell typing was feasible with both methods, giving two distinct clusters for HL60- and MCF7-sensitive cells. In addition, phenotyping of HL60 cells, i.e., discriminating between the sensitive and MDR phenotypes, was attempted by both methods. FTIR could not only delineate between the sensitive and resistant HL60 cells, but also gave two distinct clusters for the resistant cells, which required a two-step procedure with Raman spectra. In the case of MCF7 cell lines, both the sensitive and resistant phenotypes could be differentiated very efficiently by PCA analysis of their FTIR and Raman point spectra. These results indicate the prospective applicability of FTIR and micro-Raman approaches in the differentiation of cell types as well as characterization of the cell status, such as the MDR phenotype exhibited in resistant leukemia cell lines like HL60 and MCF7. © 2006 Wiley Periodicals, Inc. Biopolymers 82: 462,470, 2006 This article was originally published online as an accepted preprint. The "Published Online" date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com [source]


Towards a universal product ion mass spectral library , reproducibility of product ion spectra across eleven different mass spectrometers

RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 12 2008
Chris Hopley
Product ion spectra produced by collision-induced dissociation (CID) in tandem mass spectrometry experiments can differ markedly between instruments. There have been a number of attempts to standardise the production of product ion spectra; however, a consensus on the most appropriate approach to the reproducible production of spectra has yet to be reached. We have previously reported the comparison of product ion spectra on a number of different types of instruments , a triple quadrupole, two ion traps and a Fourier transform ion cyclotron resonance mass spectrometer (Bristow AWT, Webb KS, Lubben AT, Halket JM. Rapid Commun. Mass Spectrom. 2004; 18: 1). The study showed that a high degree of reproducibility was achievable. The goal of this study was to improve the comparability and reproducibility of CID product ion mass spectra produced in different laboratories and using different instruments. This was carried out experimentally by defining a spectral calibration point on each mass spectrometer for product ion formation. The long-term goal is the development of a universal (instrument independent) product ion mass spectral library for the identification of unknowns. The spectra of 48 compounds have been recorded on eleven mass spectrometers: six ion traps, two triple quadrupoles, a hybrid triple quadrupole, and two quadrupole time-of-flight instruments. Initially, 4371 spectral comparisons were carried out using the data from eleven instruments and the degree of reproducibility was evaluated. A blind trial has also been carried out to assess the reproducibility of spectra obtained during LC/MS/MS. The results suggest a degree of reproducibility across all instrument types using the tuning point technique. The reproducibility of the product ion spectra is increased when comparing the tandem in time type instruments and the tandem in space instruments as two separate groups. This may allow the production of a more limited, yet useful, screening library for LC/MS/MS identification using instruments of the same type from different manufacturers. Copyright © 2008 John Wiley & Sons, Ltd. [source]