Specific Reduction (specific + reduction)

Distribution by Scientific Domains


Selected Abstracts


Dissociation between MEG alpha modulation and performance accuracy on visual working memory task in obsessive compulsive disorder

HUMAN BRAIN MAPPING, Issue 12 2007
Kristina T. Ciesielski
Abstract Oscillatory brain activity in the alpha band (8,13 Hz) is modulated by cognitive events. Such modulation is reflected in a decrease of alpha (event-related desynchronization; ERD) with high cognitive load, or an increase (event-related synchronization) with low cognitive demand or with active inhibition of distractors. We used magnetoencephalography to investigate the pattern of prefrontal and parieto-occipital alpha modulation related to two variants of visual working memory task (delayed matching-to-sample) with and without a distractor. We tested nonmedicated, nondepressed patients suffering obsessive-compulsive disorder (OCD), and pair-matched healthy controls. The level of event-related alpha as a function of time was estimated using the temporal-spectral evolution technique. The results in OCD patients indicated: (1) a lower level of prestimulus (reference) alpha when compared to controls, (2) a task-phase specific reduction in event-related alpha ERD in particular for delayed matching-to-sample task with distractor, (3) no significant correlations between the pattern of modulation in prefrontal and parietal-occipital alpha oscillatory activity. Despite showing an abnormally low alpha modulation, the OCD patients' performance accuracy was normal. The results suggest a relationship of alpha oscillations and the underlying thalamocortical network to etiology of OCD and an involvement of a compensatory mechanism related to effortful inhibition of extrinsic and intrinsic interference. Hum Brain Mapp 2007. © 2007 Wiley-Liss, Inc. [source]


Epicutaneous immunization converts subsequent and established antigen-specific T helper type 1 (Th1) to Th2-type responses

IMMUNOLOGY, Issue 1 2006
Jessica Strid
Summary Epicutaneous immunization is a potential novel technique for topical vaccine delivery. It targets the immunologically rich milieu of the skin while having the advantage of being a non-invasive immunization procedure. By disrupting the stratum corneum of the epidermis a natural adjuvant effect can be achieved through activation of resident Langerhans cells. This negates the normal need for co-application of noxious adjuvants. Epicutaneous immunization on barrier-disrupted skin induces potent antigen-specific systemic immunity with a strong T helper type 2 (Th2) bias. We show here that epicutaneous immunization enhances the vigour of a subsequent T-cell response to the same antigen. The induced systemic Th2 response prevents the development of Th1 responses induced through injection of antigen in complete Freund's adjuvant (CFA). Prior epicutaneous immunization results in reduced production of antigen-specific interferon-, and immunoglobulin G2a (IgG2a) and enhanced interleukin-4, IgG1 and IgE responses to immunization with CFA. Moreover, epicutaneous immunization converts an established Th1 response to a Th2 response, as demonstrated by the specific reduction of interferon-, and IgG2a and the enhancement of interleukin-4 and IgE. This Th2 dominance of epicutaneous immunization may have direct therapeutic application as an immune-modulating procedure in Th1-dominant diseases such as autoimmune rheumatoid arthritis, type 1 diabetes, Hashimoto's thyroiditis and multiple sclerosis. [source]


Attenuation of the Stimulant Response to Ethanol is Associated with Enhanced Ataxia for a GABAA, but not a GABAB, Receptor Agonist

ALCOHOLISM, Issue 1 2009
Sarah E. Holstein
Background:, The ,-aminobutyric acid (GABA) system is implicated in the neurobiological actions of ethanol, and pharmacological agents that increase the activity of this system have been proposed as potential treatments for alcohol use disorders. As ethanol has its own GABA mimetic properties, it is critical to determine the mechanism by which GABAergic drugs may reduce the response to ethanol (i.e., via an inhibition or an accentuation of the neurobiological effects of ethanol). Methods:, In this study, we examined the ability of 3 different types of GABAergic compounds, the GABA reuptake inhibitor NO-711, the GABAA receptor agonist muscimol, and the GABAB receptor agonist baclofen, to attenuate the locomotor stimulant response to ethanol in FAST mice, which were selectively bred for extreme sensitivity to ethanol-induced locomotor stimulation. To determine whether these compounds produced a specific reduction in stimulation, their effects on ethanol-induced motor incoordination were also examined. Results:, NO-711, muscimol, and baclofen were all found to potently attenuate the locomotor stimulant response to ethanol in FAST mice. However, both NO-711 and muscimol markedly increased ethanol-induced ataxia, whereas baclofen did not accentuate this response. Conclusions:, These results suggest that pharmacological agents that increase extracellular concentrations of GABA and GABAA receptor activity may attenuate the stimulant effects of ethanol by accentuating its intoxicating and sedative properties. However, selective activation of the GABAB receptor appears to produce a specific attenuation of ethanol-induced stimulation, suggesting that GABAB receptor agonists may hold greater promise as potential pharmacotherapies for alcohol use disorders. [source]


Effect of low-level laser irradiation on odontoblast-like cells

LASER PHYSICS LETTERS, Issue 9 2008
C.F. Oliveira
Abstract Low-level laser therapy (LLLT), also referred to as therapeutic laser, has been recommended for a wide array of clinical procedures, among which the treatment of dentinal hypersensitivity. However, the mechanism that guides this process remains unknown. Therefore, the objective of this study was to evaluate in vitro the effects of LLL irradiation on cell metabolism (MTT assay), alkaline phosphatase (ALP) expression and total protein synthesis. The expression of genes that encode for collagen type-1 (Col-1) and fibronectin (FN) was analyzed by RT-PCR. For such purposes, odontoblast-like cell line (MDPC-23) was previously cultured in Petri dishes (15000 cells/cm2) and submitted to stress conditions during 12 h. Thereafter, 6 applications with a monochromatic near infrared radiation (GaAlAs) set at predetermined parameters were performed at 12-h intervals. Nonirradiated cells served as a control group. Neither the MTT values nor the total protein levels of the irradiated group differed significantly from those of the control group (Mann-Whitney test; p > 0.05). On the other hand, the irradiated cells showed a decrease in ALP activity (Mann-Whitney test; p < 0.05). RT-PCR results demonstrated a trend to a specific reduction in gene expression after cell irradiation, though not significant statistically (Mann-Whitney test; p > 0.05). It may be concluded that, under the tested conditions, the LLLT parameters used in the present study did not influence cell metabolism, but reduced slightly the expression of some specific proteins. (© 2008 by Astro Ltd., Published exclusively by WILEY-VCH Verlag GmbH & Co. KGaA) [source]


IK cytokine ameliorates the progression of lupus nephritis in MRL/lpr mice

ARTHRITIS & RHEUMATISM, Issue 11 2006
Masatake Muraoka
Objective IK cytokine has been isolated as a factor that inhibits interferon-, (IFN,),induced expression of class II major histocompatibility complex (MHC) antigens. Aberrant expression of class II MHC antigens has reportedly been recognized in the target organs of autoimmune diseases and been associated with disease activity. In this study, we investigated whether IK cytokine can ameliorate the progression of lupus nephritis in MRL/lpr mice. Methods A truncated IK analog was prepared and transfected into a nonmetastatic fibroblastoid cell line, and then injected subcutaneously into MRL/lpr mice at ages 8 weeks (before the onset of lupus nephritis) and 12 weeks (at the early stage of the disease). Results An IK cytokine, when it was translated from methionine at position 316, acted as a secretory protein. This truncated IK cytokine (tIK) reduced IFN,-induced class II MHC expression in various cells through decreased expression of class II MHC transcription activator. Treatment of MRL/lpr mice with tIK significantly reduced renal damage as compared with control mice. A significant decrease in macrophage and T cell infiltration was found in the kidneys of tIK-treated mice, resulting in decreased production of IFN, and interleukin-2. Mice treated with tIK also showed significant reduction of anti-DNA antibodies and circulating immune complexes. A specific reduction of class II MHC expression was observed on B cells and monocytes as well as in the kidney. Conclusion We prepared a potent IK analog and demonstrated its ability to ameliorate the progression of lupus nephritis. This agent may therefore provide a new therapeutic approach for lupus nephritis. [source]


A molecular assessment of the iron stress response in the two phylogenetic clades of Trichodesmium

ENVIRONMENTAL MICROBIOLOGY, Issue 1 2010
P. Dreux Chappell
Summary Trichodesmium spp. play key roles in global carbon and nitrogen budgets and thus defining what controls their productivity is important for understanding climate change. While iron availability has been shown to be an important chemical factor for controlling both growth and nitrogen fixation rates in Trichodesmium, all culture experiments to date have focused solely on representatives from one clade of Trichodesmium. Genomic sequence analysis determined that the Trichodesmium erythraeum (IMS101) genome contains many of the archetypical genes involved in the prokaryotic iron stress response. Focusing on three of these genes, isiB, idiA and feoB, we found that all three showed an iron stress response in axenic T. erythraeum (IMS101), and their sequences were well conserved across four species in our Trichodesmium culture collection [consisting of two T. erythraeum strains (IMS101 and GBRTRLI101), two Trichodesmium tenue strains (Z-1 and H9-4), Trichodesmium thiebautii and Trichodesmium spiralis]. With clade-specific quantitative PCR (qPCR) primers for one of these genes, isiB, we found that high isiB expression at low Fe levels corresponded to specific reductions in N2 fixation rates in both major phylogenetic clades of Trichodesmium (the T. erythraeum clade and T. tenue clade). With regard to the two clades, the most significant difference determined was temperature optima, while more subtle differences in growth, N2 fixation rate and gene expression responses to Fe stress were also observed. However the apparent conservation of the Fe stress response in the Trichodesmium genus suggests that it is an important adaptation for their niche in the oligotrophic ocean. [source]


Blockade of the interleukin-7 receptor inhibits collagen-induced arthritis and is associated with reduction of T cell activity and proinflammatory mediators

ARTHRITIS & RHEUMATISM, Issue 9 2010
Sarita A. Y. Hartgring
Objective To study the effects of interleukin-7 receptor ,-chain (IL-7R,) blockade on collagen-induced arthritis (CIA) and to investigate the effects on T cell numbers, T cell activity, and levels of proinflammatory mediators. Methods We studied the effect of anti,IL-7R, antibody treatment on inflammation and joint destruction in CIA in mice. Numbers of thymocytes, splenocytes, T cell subsets, B cells, macrophages, and dendritic cells were assessed. Cytokines indicative of Th1, Th2, and Th17 activity and several proinflammatory mediators were assessed by multianalyte profiling in paw lysates. In addition, T cell,associated cytokines were measured in supernatants of lymph node cell cultures. Results Anti,IL-7R, treatment significantly reduced clinical arthritis severity in association with reduced radiographic joint damage. Both thymic and splenic cellularity were reduced after treatment with anti,IL-7R,. IL-7R, blockade specifically reduced the total number of cells as well as numbers of naive, memory, CD4+, and CD8+ T cells from the spleen and significantly reduced T cell,associated cytokines (interferon-,, IL-5, and IL-17). IL-7R, blockade also decreased local levels of proinflammatory cytokines and factors associated with tissue destruction, including tumor necrosis factor ,, IL-1,, IL-6, matrix metalloproteinase 9, and RANKL. IL-7R, blockade did not significantly affect B cells, macrophages, and dendritic cells. B cell activity, indicated by serum anticollagen IgG antibodies, was not significantly altered. Conclusion Blockade of IL-7R, potently inhibited joint inflammation and destruction in association with specific reductions of T cell numbers, T cell,associated cytokines, and numerous mediators that induce inflammation and tissue destruction. This study demonstrates an important role of IL-7R,driven immunity in experimental arthritis and indicates the therapeutic potential of IL-7R, blockade in human arthritic conditions. [source]