Specific Organelles (specific + organelle)

Distribution by Scientific Domains


Selected Abstracts


The roles of actin cytoskeleton and microtubules for membrane recycling of a food vacuole in Tetrahymena thermophila

CYTOSKELETON, Issue 7 2009
Maki Sugita
Abstract Phagocytosis is a fundamental cellular event for the uptake of nutrients from the environment in several kinds of eukaryote. Most ciliates egest waste and undigested materials in food vacuoles (FVs) through a cytoproct, which is a specific organelle for defecation. It is considered that FV egestion is initiated by fusion between the FV membrane and plasma membrane in a cytoproct and completed with retrieval of the membrane into a cytoplasmic space. In addition, electron microscopy indicated that microfilaments might be involved in the recycling process of the FV membrane in ciliates over 30 years ago; however, there is no conclusive evidence. Here we demonstrated actin organization on FV near a cytoproct in Tetrahymena thermophila by using a marker for a cytoproct. Moreover, it was revealed that cells treated with actin cytoskeletal inhibitor, Latrunculin B, might be suppressed for membrane retrieval in a cytoproct following FV egestion. On the other hand, the actin structures, likely to be the site of membrane retrieval, were frequently observed in the cells treated with cytoplasmic microtubules inhibitor, Nocodazole. We concluded that actin filaments were probably required for recycling of the FV membrane in a cytoproct although the role was not essential for FV egestion. In addition, it was possible that microtubules might be involved in transportation of recycling vesicles of FV coated with F-actin. Cell Motil. Cytoskeleton 2009. © 2009 Wiley-Liss, Inc. [source]


Localization of Sepiapterin Reductase in Pigment Cells of Oryzias latipes

PIGMENT CELL & MELANOMA RESEARCH, Issue 5 2003
Sumiko Negishi
Body colors of poikilothermal vertebrates are derived from three distinct types of pigment cells, melanophores, erythro/xanthophores and irido/leucophores. It is well known that melanin in melanophores is synthesized by tyrosinase within a specific organelle termed the melanosome. Although sepiapterin reductase (SPR) is an important enzyme involved in metabolizing biopterin and sepiapterin (a conspicuous pteridine as a coloring pigment in xanthophores) the distribution of SPR has not been shown in pigment cells. An antibody raised in rabbits against rat SPR was used to demonstrate the presence of SPR in pigment cells of Oryzias latipes. This study, which used immunohistochemistry with fluorescence or peroxidase/diaminobenzidine as markers, revealed that SPR could be detected readily in xanthophores, but only faintly in melanophores. These results suggest that sepiapterin is metabolized within xanthophores. Moreover, these experiments show that a protein sharing immunological cross-reactivity with rat SPR is located in teleost O. latipes xanthophores, which is significant considering the relationship of pteridine metabolism between poikilothermal vertebrates and mammals. Further progress in investigations of the roles of pteridines in vertebrates will be promoted by using these fish which can be bred in mass rather easily in the laboratory. [source]


A subclass of myosin XI is associated with mitochondria, plastids, and the molecular chaperone subunit TCP-1, in maize

CYTOSKELETON, Issue 4 2004
Zhengyuan Wang
Abstract The role and regulation of specific plant myosins in cyclosis is not well understood. In the present report, an affinity-purified antibody generated against a conserved tail region of some class XI plant myosin isoforms was used for biochemical and immunofluorescence studies of Zea mays. Myosin XI co-localized with plastids and mitochondria but not with nuclei, the Golgi apparatus, endoplasmic reticulum, or peroxisomes. This suggests that myosin XI is involved in the motility of specific organelles. Myosin XI was more than 50% co-localized with tailless complex polypeptide-1, (TCP-1,) in tissue sections of mature tissues located more than 1.0 mm from the apex, and the two proteins co-eluted from gel filtration and ion exchange columns. On Western blots, TCP-1, isoforms showed a developmental shift from the youngest 5.0 mm of the root to more mature regions that were more than 10.0 mm from the apex. This developmental shift coincided with a higher percentage of myosin XI /TCP-1, co-localization, and faster degradation of myosin XI by serine protease. Our results suggest that class XI plant myosin requires TCP-1, for regulating folding or providing protection against denaturation. Cell Motil. Cytoskeleton 57:218,232, 2004. © 2004 Wiley-Liss, Inc. [source]


Surface wound healing: a new, general function of eukaryotic cells

JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 3 2003
J. Meldolesi
Abstract The ability to repair surface wounds is a property, necessary for long-term survival, expressed to various extents by all eukaryotic cell types except erythrocytes. The process is based on the rapid Ca2+ -induced exocytosis of various types of specific organelles, such as lysosomes and enlargeosomes, that decreases surface tension and makes possible the spontaneous fusion of lipid monolayers at the lesion edges. The recognized importance of the process in physiology and in several cases of pathology is discussed. [source]


Longin-like folds identified in CHiPS and DUF254 proteins: Vesicle trafficking complexes conserved in eukaryotic evolution

PROTEIN SCIENCE, Issue 11 2006
Lisa N. Kinch
Abstract Eukaryotic protein trafficking pathways require specific transfer of cargo vesicles to different target organelles. A number of vesicle trafficking and membrane fusion components participate in this process, including various tethering factor complexes that interact with small GTPases prior to SNARE-mediated vesicle fusion. In Saccharomyces cerevisiae a protein complex of Mon1 and Ccz1 functions with the small GTPase Ypt7 to mediate vesicle trafficking to the vacuole. Mon1 belongs to DUF254 found in a diverse range of eukaryotic genomes, while Ccz1 includes a CHiPS domain that is also present in a known human protein trafficking disorder gene (HPS-4). The present work identifies the CHiPS domain and a sequence region from another trafficking disorder gene (HPS-1) as homologs of an N-terminal domain from DUF254. This link establishes the evolutionary conservation of a protein complex (HPS-1/HPS-4) that functions similarly to Mon1/Ccz1 in vesicle trafficking to lysosome-related organelles of diverse eukaryotic species. Furthermore, the newly identified DUF254 domain is a distant homolog of the ,-adaptin longin domain found in clathrin adapter protein (AP) complexes of known structure that function to localize cargo protein to specific organelles. In support of this fold assignment, known longin domains such as the AP complex ,-adaptin, the synaptobrevin N-terminal domains sec22 and Ykt6, and the srx domain of the signal recognition particle receptor also regulate vesicle trafficking pathways by mediating SNARE fusion, recognizing specialized compartments, and interacting with small GTPases that resemble Ypt7. [source]


Sub-cellular localization of membrane proteins

PROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 19 2008
Pawel G. Sadowski
Abstract In eukaryotes, numerous complex sub-cellular structures exist. The majority of these are delineated by membranes. Many proteins are trafficked to these in order to be able to carry out their correct physiological function. Assigning the sub-cellular location of a protein is of paramount importance to biologists in the elucidation of its role and in the refinement of knowledge of cellular processes by tracing certain activities to specific organelles. Membrane proteins are a key set of proteins as these form part of the boundary of the organelles and represent many important functions such as transporters, receptors, and trafficking. They are, however, some of the most challenging proteins to work with due to poor solubility, a wide concentration range within the cell and inaccessibility to many of the tools employed in proteomics studies. This review focuses on membrane proteins with particular emphasis on sub-cellular localization in terms of methodologies that can be used to determine the accurate location of membrane proteins to organelles. We also discuss what is known about the membrane protein cohorts of major organelles. [source]