Specific Gene Expression (specific + gene_expression)

Distribution by Scientific Domains


Selected Abstracts


Three-dimensional slice cultures from murine fetal gut for investigations of the enteric nervous system

DEVELOPMENTAL DYNAMICS, Issue 1 2007
Marco Metzger
Abstract Three-dimensional intestinal cultures offer new possibilities for the examination of growth potential, analysis of time specific gene expression, and spatial cellular arrangement of enteric nervous system in an organotypical environment. We present an easy to produce in vitro model of the enteric nervous system for analysis and manipulation of cellular differentiation processes. Slice cultures of murine fetal colon were cultured on membrane inserts for up to 2 weeks without loss of autonomous contractility. After slice preparation, cultured tissue reorganized within the first days in vitro. Afterward, the culture possessed more than 35 cell layers, including high prismatic epithelial cells, smooth muscle cells, glial cells, and neurons analyzed by immunohistochemistry. The contraction frequency of intestinal slice culture could be modulated by the neurotransmitter serotonin and the sodium channel blocker tetrodotoxin. Coculture experiments with cultured neurospheres isolated from enhanced green fluorescent protein (eGFP) transgenic mice demonstrated that differentiating eGFP-positive neurons were integrated into the intestinal tissue culture. This slice culture model of enteric nervous system proved to be useful for studying cell,cell interactions, cellular signaling, and cell differentiation processes in a three-dimensional cell arrangement. Developmental Dynamics 236:128,133, 2007. © 2006 Wiley-Liss, Inc. [source]


Identification of evolutionarily conserved regulatory elements in the mouse Fgf8 locus

GENESIS: THE JOURNAL OF GENETICS AND DEVELOPMENT, Issue 1 2006
Friedrich Beermann
Abstract The secreted signaling molecule fibroblast growth factor 8 (Fgf8) is an essential component of certain embryonic signaling centers including the mid-hindbrain (isthmic) organizer, the first branchial arch (BA1), and the apical ectodermal ridge (AER). In these signaling centers Fgf8 transcripts are expressed in a dynamic and transient fashion, but the mechanism by which this highly specific expression pattern is established remains largely unknown. We used DNA sequence comparisons coupled to transgenic approaches to obtain insight into the structure and function of regulatory elements in the Fgf8 locus. First, a bacterial artificial chromosome (BAC) containing the mouse Fgf8 gene partially rescues the embryonic lethality of Fgf8- deficient mice and controls Fgf8 -specific gene expression of a coinjected lacZ reporter transgene. Second, sequence comparison of vertebrate Fgf8 loci revealed evolutionarily highly conserved noncoding sequences that were unexpectedly located mainly 3, of the Fgf8 coding region. Third, in transgenic mice some of these elements were sufficient to target expression to the AER, tail bud, and brain, including the isthmic organizer, indicating that they may represent Fgf8 cis-acting elements. Collectively, these data identify novel regulatory elements of the Fgf8 gene sufficient to drive expression to regions of known Fgf8 activity. genesis 44:1,6, 2006. © 2006 Wiley-Liss, Inc. [source]


Molecular characterization of two novel milk proteins in the tsetse fly (Glossina morsitans morsitans)

INSECT MOLECULAR BIOLOGY, Issue 2 2010
G. Yang
Abstract Purpose: Milk proteins are an essential component of viviparous reproduction in the tsetse fly. Milk proteins are synthesized in and secreted from the milk gland tissue and constitute 50% of the secretions from which the intrauterine larva derives its nourishment. To understand milk protein function and regulation during viviparous reproduction, milk proteins need to be identified and characterized. Methods: Two putative unknown secretory proteins (GmmMGP2 and GmmMGP3) were selected by bioinformatic analysis of tissue specific tsetse cDNA libraries. RT-PCR analysis was performed to verify their milk gland/fat body specific expression profile. Detailed characterization of developmental and tissue specific expression of these proteins was performed by northern blot analysis and fluorescent in situ hybridization. Functional analysis of the milk gland proteins during the tsetse gonotrophic cycle was performed using RNA interference (RNAi). Results: The predicted proteins from gmmmgp2 and gmmmgp3 are small ,22 kD and contain a high proportion of hydrophobic amino acids and potential phosphorylation sites. Expression of both genes is tissue specific to the secretory cells of the milk gland. Transcript abundance for both genes increases over the course of intrauterine larval development and parallels that of gmmmgp, a well characterized milk protein gene considered to be the major milk protein. Phenotypic analysis of flies after RNA interference treatment revealed a significant effect upon fecundity in the gmmmgp2 knockdown flies, but not the gmmmgp3 flies. Knockdown of gmmmgp2 resulted in disruption of ovulation and consequent oocyte accumulation and degradation. Gmmmgp2 knockdown also had a significant impact on fly mortality. Conclusions: This work identifies two novel genes, the proteins of which appear to function in response to intrauterine larvigenesis in tsetse. These proteins may be nutritional components of the milk secretions provided to the larva from the mother. Phenotypic data from knockdown of gmmmgp2 suggests that this protein may also have a regulatory function given the defect in ovulation observed in knockdown flies. Further analysis of these genes will be important (in conjunction with other milk proteins) for identification of transcriptional regulation mechanisms that direct milk gland/pregnancy specific gene expression. [source]


Effects of phorbol ester-sensitive PKC (c/nPKC) activation on the production of adiponectin in 3T3-L1 adipocytes

IUBMB LIFE, Issue 6 2009
Takahide Ikeda
Abstract PPAR, plays a key role in adipocyte specific gene expression. In this study, we assessed the effects of phorbol ester (TPA)-sensitive PKC (c/nPKC) activation on the expression of adipocyte specific genes and inflammation related genes. Treatment with both TPA and TNF, decreased mRNA levels of PPAR,, aP2, LPL and adiponectin. TNF,, but not TPA, increased IL-6 and MCP-1 mRNA levels, Next, we investigated the effects of ligands which activate c/nPKC. Insulin and angiotensin II (AII), but not high glucose, reduced PPAR,, aP2 and adiponectin mRNA levels. AII-induced suppression of these genes was restored in the presence of Go6976, a specific c/nPKC inhibitor, and candesartan, an AII receptor blocker. The effect of reduced insulin was prevented by Go6976 and LY294002, a specific PI 3-kinase inhibitors. Our results indicate that activation of c/nPKC could debilitate and/or might deteriorate insulin sensitivity in vivo, through the reduction of PPAR, and adiponectin expression in adipocyte. © 2009 IUBMB IUBMB Life, 61(6): 644,650, 2009 [source]


Ferritin ferroxidase activity: A potent inhibitor of osteogenesis

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 1 2010
Abolfazl Zarjou
Abstract Hemochromatosis is a known cause of osteoporosis, and iron overload has deleterious effects on bone. Although iron overload and its association with osteoporosis has long been recognized, the pathogenesis and exact role of iron have been undefined. Bone is an active tissue with constant remodeling capacity. Osteoblast (OB) development and maturation are under the influence of core binding factor ,-1 (CBF-,1), which induces expression of OB-specific genes, including alkaline phosphatase, an important enzyme in early osteogenesis, and osteocalcin, a noncollagenous protein deposited within the osteoid. This study investigates the mechanism by which iron inhibits human OB activity, which in vivo may lead to decreased mineralization, osteopenia, and osteoporosis. We demonstrate that iron-provoked inhibition of OB activity is mediated by ferritin and its ferroxidase activity. We confirm this notion by using purified ferritin H-chain and ceruloplasmin, both known to possess ferroxidase activity that inhibited calcification, whereas a site-directed mutant of ferritin H-chain lacking ferroxidase activity failed to provide any inhibition. Furthermore, we are reporting that such suppression is not restricted to inhibition of calcification, but OB-specific genes such as alkaline phosphatase, osteocalcin, and CBF-,1 are all downregulated by ferritin in a dose-responsive manner. This study corroborates that iron decreases mineralization and demonstrates that this suppression is provided by iron-induced upregulation of ferritin. In addition, we conclude that inhibition of OB activity, mineralization, and specific gene expression is attributed to the ferroxidase activity of ferritin. © 2010 American Society for Bone and Mineral Research [source]


Challenges and strategies: The immune responses in gene therapy

MEDICINAL RESEARCH REVIEWS, Issue 6 2004
Hai-sheng Zhou
Abstract The host immune responses, including T lymphocytes mediated immune response and humoral immune responses are the important parts of the challenges in gene therapy. There are some potential immunostimulants in gene delivery systems, such as viral and non-viral vectors. Viral gene products, transgene products, viral proteins derived from viral particles required by dead-end infection, and CpG DNA in plasmid may play important roles in inducing the host immune responses when foreign genes are transferred into the targeted tissues. The immune responses should lead to many problems in gene therapy: transient expression of therapeutic gene, non-efficient re-administration of the same vectors, and severe side-effects in clinical trials. Although RNAi may act as gene therapeutic agent for suppression of specific gene expression, little attention has been given to the potential non-specific effects that might be induced. It was reported that small interfering RNAs (siRNAs) can induce the host interferon response following transfected to mammalian cells. Facing these challenges, a number of studies have been focused on taking measures to solve them, such as immunosuppression, selection of different administration routes and dose of the vectors, using the tissue-specific promoters and modifying the vectors. © 2004 Wiley Periodicals, Inc. Med Res Rev, 24, No. 6, 748,761, 2004 [source]


Gene expression changes in postmortem tissue from the rostral pons of multiple system atrophy patients

MOVEMENT DISORDERS, Issue 6 2007
Anna Jelaso Langerveld PhD
Abstract Multiple system atrophy (MSA) is a neurodegenerative disease characterized by various degrees of Parkinsonism, cerebellar ataxia, and autonomic dysfunction. In this report, Affymetrix DNA microarrays were used to measure changes in gene expression in the rostral pons, an area that undergoes extensive damage in MSA, but not other synucleinopathies. Significant changes in expression of 254 genes (180 downregulated and 74 upregulated) occurred in pons tissue from MSA patients when compared with control patients. The downregulated genes were primarily associated with biological functions known to be impaired in Parkinson's disease (PD) and other neurological diseases; for example, downregulation occurred in genes associated with mitochondrial function, ubiquitin-proteasome function, protein modification, glycolysis/metabolism, and ion transport. On the other hand, upregulated genes were associated with transcription/RNA modification, inflammation, immune system function, and oligodendrocyte maintenance and function. Immunocytochemistry, in conjunction with quantitative image analysis, was carried out to characterize ,-synuclein protein expression as glial cytoplasmic inclusions in the pontocerebellar tract in rostral pons tissue and to determine the relationship between the amount of aggregated ,-synuclein protein and changes in specific gene expression. Of the regulated genes, 86 were associated with the amount of observed aggregated ,-synuclein protein in the rostral pons tissue. These data indicate that cells in the pons of MSA patients show changes in gene expression previously associated with the substantia nigra of PD patients and/or other neurological diseases, with additional changes, for example related to oligodendrocyte function unique to MSA. © 2007 Movement Disorder Society [source]


Identification of uniquely expressed transcription factors in highly purified B-cell lymphoma samples,,§

AMERICAN JOURNAL OF HEMATOLOGY, Issue 6 2010
Ulrika Andréasson
Transcription factors (TFs) are critical for B-cell differentiation, affecting gene expression both by repression and transcriptional activation. Still, this information is not used for classification of B-cell lymphomas (BCLs). Traditionally, BCLs are diagnosed based on a phenotypic resemblance to normal B-cells; assessed by immunohistochemistry or flow cytometry, by using a handful of phenotypic markers. In the last decade, diagnostic and prognostic evaluation has been facilitated by global gene expression profiling (GEP), providing a new powerful means for the classification, prediction of survival, and response to treatment of lymphomas. However, most GEP studies have typically been performed on whole tissue samples, containing varying degrees of tumor cell content, which results in uncertainties in data analysis. In this study, global GEP analyses were performed on highly purified, flow-cytometry sorted tumor-cells from eight subgroups of BCLs. This enabled identification of TFs that can be uniquely associated to the tumor cells of chronic lymphocytic leukemia (CLL), diffuse large B-cell lymphoma (DLBCL), follicular lymphoma (FL), hairy cell leukemia (HCL), and mantle cell lymphoma (MCL). The identified transcription factors influence both the global and specific gene expression of the BCLs and have possible implications for diagnosis and treatment. Am. J. Hematol., 2010. © 2010 Wiley-Liss, Inc. [source]


Detection of tumor specific gene expression in bone marrow and peripheral blood from patients with small cell lung carcinoma

CANCER, Issue 4 2003
Masato Shingyoji M.D.
Abstract BACKGROUND Small cell lung carcinoma (SCLC) has the propensity to grow rapidly and metastasize extensively. Detection of micro-dissemination of SCLC may have clinical relevance. For its detection, tumor-specific gene expressions were examined in peripheral blood and bone marrow aspirate from patients with SCLC. METHODS Expression of prepro-gastrin-releasing peptide (preproGRP), neuromedin B receptor (NMB-R) and gastrin-releasing peptide receptor (GRP-R) were examined by reverse transcriptase polymerase chain reaction (RT-PCR) in peripheral blood and bone marrow aspirate from 40 untreated patients with SCLC. Control samples consisted of peripheral blood samples from 5 patients with nonsmall cell lung cancer (NSCLC) and 20 healthy volunteers. RESULTS Positive rates of preproGRP, NMB-R, and GRP-R in bone marrow aspirate of patients with SCLC were 23% (9/40), 8% (3/40), and 10% (4/40), respectively. Those rates in peripheral blood were 11% (4/38), 5% (2/38), and 29% (11/38), respectively. Although GRP-R expression was detected in patients with NSCLC and in healthy volunteers, preproGRP and NMB-R expressions were not detected in patients with NSCLC and in healthy volunteers. All three gene expressions in bone marrow were more frequently observed in patients with bone marrow metastasis, accessed by biopsy, than in patients without. PreproGRP gene expression in bone marrow was also more frequent in patients with bone metastasis, accessed by bone scintigram, than in patients without, and was related to poorer survival. CONCLUSIONS Micro-dissemination of SCLC was detectable by RT-PCR of preproGRP and NMB-R, both specific for SCLC. These gene expressions in bone marrow may be related to disease extent and prognosis. Cancer 2003;97:1057,62. © 2003 American Cancer Society. DOI 10.1002/cncr.11108 [source]