Home About us Contact | |||
Specific Expression Patterns (specific + expression_pattern)
Selected Abstractst(10;11)-Acute leukemias with MLL-AF10 and MLL-ABI1 chimeric transcripts: Specific expression patterns of ABI1 gene in leukemia and solid tumor cell linesGENES, CHROMOSOMES AND CANCER, Issue 1 2001Noriko Shibuya The recurrent translocation t(10;11) is associated with acute myeloid leukemia (AML). The AF10 gene on chromosome 10 at band p12 and MLL at 11q23 fuse in the t(10;11)(p12;q23). Recently, we have identified ABI1 as a new partner gene for MLL in an AML patient with a t(10;11)(p11.2;q23). The ABI1 is a human homologue of the mouse Abl -interactor 1 (Abi1), encoding an Abl-binding protein. The ABI1 protein exhibits sequence similarity to homeotic genes, and contains several polyproline stretches and a src homology 3 (SH3) domain. To clarify the clinical features of t(10;11)-leukemias, we investigated 6 samples from acute leukemia patients with t(10;11) and MLL rearrangement and detected MLL-AF10 chimeric transcripts in 5 samples and MLL-ABI1 in one. The patient with MLL-ABI1 chimeric transcript is the second case described, thus confirming that the fusion of the MLL and ABI1 genes is a recurring abnormality. Both of the patients with MLL-ABI1 chimeric transcript are surviving, suggesting that these patients have a better prognosis than the patients with MLL-AF10. To investigate the roles of AF10 and ABI1 further, we examined the expression of these genes in various cell lines and fresh tumor samples using the reverse transcriptase-polymerase chain reaction method. Although AF10 was expressed in almost all cell lines similarly, the expression patterns of ABI1 were different between leukemia and solid tumor cell lines, suggesting the distinctive role of each isoform of ABI1 in these cell lines. We also determined the complete mouse Abi1 sequence and found that the sequence matched with human ABI1 better than the originally reported Abi1 sequence. Further functional analysis of the MLL-AF10 and MLL-ABI1 fusion proteins will provide new insights into the leukemogenesis of t(10;11)-AML. © 2001 Wiley-Liss, Inc. [source] Molecular cloning and expression regulation of PRG-3, a new member of the plasticity-related gene familyEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 1 2004Nicolai E. Savaskan Abstract Phospholipid-mediated signalling on neurons provokes diverse responses such as neurogenesis, pattern formation and neurite remodelling. We have recently uncovered a novel set of molecules in the mammalian brain, named plasticity-related genes (PRGs), which mediate lipid phosphate phosphatase activity and provide evidence for their involvement in mechanisms of neuronal plasticity. Here, we report on a new member of the vertebrate-specific PRG family, which we have named plasticity-related gene-3 (PRG-3). PRG-3 is heavily expressed in the brain and shows a specific expression pattern during brain development where PRG-3 expression is found predominantly in neuronal cell layers and is already expressed at embryonic day 16. In the mature brain, strongest PRG-3 expression occurs in the hippocampus and cerebellum. Overexcitation of neurons induced by kainic acid leads to a transient down-regulation of PRG-3. Furthermore, PRG-3 is expressed on neurite extensions and promotes neurite growth and a spreading-like cell body in neuronal cells and COS-7 cells. In contrast to previously described members of the PRG family, PRG-3 does not perform its function through enzymatic phospholipid degradation. In summary, our findings feature a new member of the PRG family which shows dynamic expression regulation during brain development and neuronal excitation. [source] Identification of evolutionarily conserved regulatory elements in the mouse Fgf8 locusGENESIS: THE JOURNAL OF GENETICS AND DEVELOPMENT, Issue 1 2006Friedrich Beermann Abstract The secreted signaling molecule fibroblast growth factor 8 (Fgf8) is an essential component of certain embryonic signaling centers including the mid-hindbrain (isthmic) organizer, the first branchial arch (BA1), and the apical ectodermal ridge (AER). In these signaling centers Fgf8 transcripts are expressed in a dynamic and transient fashion, but the mechanism by which this highly specific expression pattern is established remains largely unknown. We used DNA sequence comparisons coupled to transgenic approaches to obtain insight into the structure and function of regulatory elements in the Fgf8 locus. First, a bacterial artificial chromosome (BAC) containing the mouse Fgf8 gene partially rescues the embryonic lethality of Fgf8- deficient mice and controls Fgf8 -specific gene expression of a coinjected lacZ reporter transgene. Second, sequence comparison of vertebrate Fgf8 loci revealed evolutionarily highly conserved noncoding sequences that were unexpectedly located mainly 3, of the Fgf8 coding region. Third, in transgenic mice some of these elements were sufficient to target expression to the AER, tail bud, and brain, including the isthmic organizer, indicating that they may represent Fgf8 cis-acting elements. Collectively, these data identify novel regulatory elements of the Fgf8 gene sufficient to drive expression to regions of known Fgf8 activity. genesis 44:1,6, 2006. © 2006 Wiley-Liss, Inc. [source] Perplexing Pax: From puzzle to paradigmDEVELOPMENTAL DYNAMICS, Issue 10 2008Judith A. Blake Abstract Pax transcription factors are critical for the development of the central nervous system (CNS) where they have a biphasic role, initially dictating CNS regionalization, while later orchestrating differentiation of specific cell subtypes. While a plethora of expression, misexpression, and mutation studies lend support for this argument and clarify the importance of Pax genes in CNS development, less well understood, and more perplexing, is the continued Pax expression in the adult CNS. In this article we explore the mechanism of action of Pax genes in general, and while being cognizant of existing developmental data, we also draw evidence from (1) adult progenitor cells involved in regeneration and tissue maintenance, (2) specific expression patterns in fully differentiated adult cells, and (3) analysis of direct target genes functioning downstream of Pax proteins. From this, we present a more encompassing theory that Pax genes are key regulators of a cell's measured response to a dynamic environment. Developmental Dynamics 237:2791,2803, 2008. © 2008 Wiley-Liss, Inc. [source] Induction of apoptosis in the synovium of mice with autoantibody-mediated arthritis by the intraarticular injection of double-stranded MicroRNA-15aARTHRITIS & RHEUMATISM, Issue 9 2009Yoshihiko Nagata Objective MicroRNA is a family of noncoding RNAs that exhibit tissue-specific or developmental stage,specific expression patterns and are associated with human diseases. MicroRNA-15a (miR-15a) is reported to induce cell apoptosis by negatively regulating the expression of Bcl-2, which suppresses the apoptotic processes. The purpose of this study was to investigate whether double-stranded miR-15a administered by intraarticular injection could be taken up by cells and could induce Bcl-2 dysfunction and cell apoptosis in the synovium of arthritic mice in vivo. Methods Autoantibody-mediated arthritis was induced in male DBA/1J mice. In the experimental group, double-stranded miR-15a labeled with FAM,atelocollagen complex was injected into the knee joint. In the control group, control small interfering RNA,atelocollagen complex was injected into the knee joint. Synovial expression of miR-15a was analyzed by quantitative polymerase chain reaction, FAM by fluorescence microscopy, Bcl-2 by Western blotting, and Bcl-2 and caspase 3 by immunohistochemistry. Results The expression of miR-15a in the synovium of the experimental group was significantly higher than that in the control group. Green fluorescence emission of FAM was observed in the synovium of the experimental group. Bcl-2 protein was down-regulated and the expression of caspase 3 was increased as compared with that in the control group. Conclusion These results indicate that the induction of cell apoptosis after intraarticular injection of double-stranded miR-15a occurs through inhibition of the translation of Bcl-2 protein in arthritic synovium. [source] Expression of C-IAP1, C-IAP2 and SURVIVIN discriminates different types of lymphoid malignanciesBRITISH JOURNAL OF HAEMATOLOGY, Issue 6 2005Aniek O. de Graaf Summary (De-)regulation of apoptosis plays an important role in normal and malignant lymphopoiesis. Apoptosis-regulating genes of the BCL-2 family and the recently identified inhibitors of apoptosis (IAP) family have been implicated in different types of non-Hodgkin lymphoma (NHL). To investigate whether expression of specific apoptosis-regulating genes correlated with different types of lymphoid malignancies, we measured the expression of five BCL-2 family genes, four IAP family genes and SMAC by real-time quantitative polymerase chain reaction in patient samples. In total, 137 samples from B- and T-cell acute lymphoblastic leukaemia (ALL), B-cell chronic lymphocytic leukaemia (CLL), six different NHL types and three control tissue types were analysed. The data were further analysed using cluster and discriminant analysis. Three specific expression patterns were identified for CLL, ALL and NHL respectively. CLL samples, as well as B-ALL and follicular lymphoma samples showed high similarity in the expression of these apoptosis-regulating genes and could be distinguished from each other and other diseases and controls. Discriminant analysis identified three members of the IAP family, C-IAP1, C-IAP2 and SURVIVIN, as the most informative genes to discriminate between these lymphoid malignancies. [source] |