Specific Experiments (specific + experiment)

Distribution by Scientific Domains


Selected Abstracts


A - scab (Apple-scab), a simulation model for estimating risk of Venturia inaequalis primary infections,

EPPO BULLETIN, Issue 2 2007
V. Rossi
A-scab (Apple-scab) is a dynamic simulation model for Venturia inaequalis primary infections on apple. It simulates development of pseudothecia, ascospore maturation, discharge, deposition and infection during the season based on hourly data of air temperature, rainfall, relative humidity and leaf wetness. A-scab produces a risk index for each infection period and forecasts the probable periods of symptoms appearance. The model was validated under different epidemiological conditions: its outputs were successfully compared with daily spore counts and actual onset and severity of the disease under orchard conditions, and neither corrections nor calibrations have been necessary to adapt the model to different apple-growing areas. Compared to other existing models, A-scab: (i) combines information from literature and data acquired from specific experiments; (ii) is completely ,open' because both model structure and algorithms have been published and are easily accessible; (iii) is not written with a specific computer language but it works on simple-to-use electronic sheets. For these reasons the model can be easily implemented in the computerized systems used by warning services. [source]


Combustion of a substitution fuel made of cardboard and polyethylene: influence of the mix characteristics,modeling

FIRE AND MATERIALS, Issue 7 2008
S. Salvador
Abstract The model proposed in this paper describes the combustion of a porous medium subjected to a radiative heat flux at its surface. There is no forced convection of air through the medium; hence this situation corresponds to the one encountered at the surface of fuel elements such as pellets, bricks or ballots, inside a furnace or kiln. Ash is not removed from the surface. No assumption is made a priori in terms of the limiting phenomena. The medium is composed of cardboard and polyethylene (PE). Based on previous experimental work (Fuel 2004; 83:451,462), the material is assumed to be a macroscopically homogeneous porous medium. Local thermal equilibrium is also assumed. Most of the parameters required for the modeling were determined from specific experiments. Good predictions of the sample mass evolution and of the temperature levels inside the sample body were obtained for a large range of densities and PE content. A devolatilization front of about 20,mm first propagates inside the medium. The volatile matter flux is advected to the surface, which leads to the formation of the flame above the surface. Then a second char oxidation front propagates, starting from the surface. The front thickness is approximately 25,mm under the experimental conditions. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Solid-state NMR Structure Determination

IUBMB LIFE, Issue 9 2003
Alison Drechsler
Abstract Biological applications of solid-state NMR (SS-NMR) have been predominantly in the area of model membrane systems. Increasingly the focus has been membrane peptides and proteins. SS-NMR is able to provide information about how the peptides or proteins interact with the lipids or other peptides/proteins in the membrane, their effect on the membrane and the location of the peptides or proteins relative to the membrane surface. Recent developments in biological SS-NMR have been made possible by improvements in labelling and NMR techniques. This review discusses aligned systems and magic angle spinning techniques, bilayers and bicelles, and measurement of chemical shift anisotropy and dipolar coupling. A number of specific experiments such as cross polarization, rotational resonance, REDOR, PISEMA, MAOSS and multidimensional experiments are described. In addition to 2H, 13C and 15N, recent solid-sate 1H, 19F and 17O NMR work is discussed. Several examples of the use of SS-NMR to determine the structure of membrane peptides and proteins are given. IUBMB Life, 55: 515-523, 2003 [source]


Optimal methods for fluorescence and diffuse reflectance measurements of tissue biopsy samples

LASERS IN SURGERY AND MEDICINE, Issue 3 2002
Gregory M. Palmer BS
Abstract Background and Objective In developing fluorescence spectroscopy systems for the in vivo detection of pre-cancer and cancer, it is often necessary to perform preliminary testing on tissue biopsies. Current standard protocols call for the tissue to be immediately frozen after biopsy and later thawed for spectroscopic analysis, but this process can have profound effects on the spectroscopic properties of tissue. This study investigates the optimal tissue handling methods for in vitro fluorescence spectroscopy studies. Study Design/Materials and Methods The epithelial tissue of the Golden Syrian hamster cheek pouch was used in this study. Three specific experiments were carried out. First, the fluorescence properties of tissues in vivo and of frozen and thawed tissue biopsies were characterized at multiple excitation wavelengths spanning the ultraviolet-visible (UV-VIS) spectrum. Next, comparison of tissue fluorescence emission spectra in vivo, ex vivo (immediately after biopsy), and after the freeze and thaw process were systematically carried out at the excitation wavelengths corresponding to the previously identified fluorescence peaks. Lastly, intensities at the excitation and emission wavelength pairs corresponding to the fluorescence peaks were measured as a function of time after biopsy. Diffuse reflectance measurements over the UV-VIS spectrum were also made to evaluate the effects of oxygenation, blood volume, and scattering on the tissue fluorescence at these different excitation,emission wavelengths. Results This study indicates that the freezing and thawing process produces a significant deviation in intensity and lineshape relative to the in vivo fluorescence emission spectral data over the entire UV-VIS range between 300 and 700 nm. By contrast, examination of ex vivo emission spectra reveals that it closely preserves both the intensity and lineshape of the in vivo emission spectra except between 500 and 700 nm. The observed deviations can be explained by the diffuse reflectance measurements, which suggest increased hemoglobin deoxygenation and wavelength dependent changes in scattering in ex vivo tissues, and increased total hemoglobin absorption in the frozen and thawed samples. Furthermore, it was found that over a time window of 1.5 hours, spectroscopic changes brought about by degradation of the tissue due to biopsy or other factors are significantly smaller (10,30% variations in intensity) than those associated with the freezing and thawing process (50,70% decrease in intensity). Conclusions It was found that the effects of freezing and thawing on the fluorescence properties of tissue are greater than any changes brought about by degradation of tissue over a time frame of 90 minutes after biopsy. Performing ex vivo fluorescence measurements within a reasonable time window has the advantage of more accurately reproducing the clinically relevant in vivo conditions in the case of the hamster cheek pouch tissue. Therefore, in tissue biopsy studies, the tissue sample should ideally be maintained in an unfrozen state prior to measurement. Lasers Surg. Med. 30:191-200, 2002. © 2002 Wiley-Liss, Inc. [source]


A phytase enzyme-based biochemistry practical particularly suited to students undertaking courses in biotechnology and environmental science

BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION, Issue 5 2004
Angela Boyce
Abstract Courses in introductory biochemistry invariably encompass basic principles of enzymology, with reinforcement of lecture-based material in appropriate laboratory practicals. Students undertaking practical classes are more enthusiastic, and generally display improved performance, when the specific experiments undertaken show direct relevance to their core degree area. Herein is described an enzyme-based practical of particular relevance to students undertaking primary degrees in biotechnology, environmental science, nutrition, as well as animal and veterinary science. The practical entails assay of phytase, an enzyme that is now routinely included in monogastric animal feed in order to ameliorate the negative nutritional and environmental consequences of its substrate, dietary phytic acid. The practical is technically straightforward, requiring relatively basic laboratory equipment and reagents that are both easily obtained and relatively inexpensive. To be an effective digestive supplement, the enzyme must display a combination of physicochemical properties, which provide sufficient scope for an interesting and multifaceted post-laboratory discussion. [source]