Specific Cleavage (specific + cleavage)

Distribution by Scientific Domains


Selected Abstracts


Specific cleavage of the DNase-I binding loop dramatically decreases the thermal stability of actin

FEBS JOURNAL, Issue 18 2010
Anastasia V. Pivovarova
Differential scanning calorimetry was used to investigate the thermal unfolding of actin specifically cleaved within the DNaseI-binding loop between residues Met47-Gly48 or Gly42-Val43 by two bacterial proteases, subtilisin or ECP32/grimelysin (ECP), respectively. The results obtained show that both cleavages strongly decreased the thermal stability of monomeric actin with either ATP or ADP as a bound nucleotide. An even more pronounced difference in the thermal stability between the cleaved and intact actin was observed when both actins were polymerized into filaments. Similar to intact F-actin, both cleaved F-actins were significantly stabilized by phalloidin and aluminum fluoride; however, in all cases, the thermal stability of the cleaved F-actins was much lower than that of intact F-actin, and the stability of ECP-cleaved F-actin was lower than that of subtilisin-cleaved F-actin. These results confirm that the DNaseI-binding loop is involved in the stabilization of the actin structure, both in monomers and in the filament subunits, and suggest that the thermal stability of actin depends, at least partially, on the conformation of the nucleotide-binding cleft. Moreover, an additional destabilization of the unstable cleaved actin upon ATP/ADP replacement provides experimental evidence for the highly dynamic actin structure that cannot be simply open or closed, but rather should be considered as being able to adopt multiple conformations. Structured digital abstract ,,MINT-7980274: Actin (uniprotkb:P68135) and Actin (uniprotkb:P68135) bind (MI:0407) by biophysical (MI:0013) [source]


Specific cleavage of ribosomal RNA and mRNA during victorin-induced apoptotic cell death in oat

THE PLANT JOURNAL, Issue 6 2006
Trinh X. Hoat
Summary Here we report that rRNA and mRNA are specifically degraded in oat (Avena sativa L.) cells during apoptotic cell death induced by victorin, a host-selective toxin produced by Cochliobolus victoriae. Northern analysis indicated that rRNA species from the cytosol, mitochondria and chloroplasts were all degraded via specific degradation intermediates during victorin-induced apoptotic cell death but, in contrast, they were randomly digested in necrotic cell death induced by 30 mm CuSO4 and heat shock. This indicates that specific rRNA cleavage could be controlled by an intrinsic program. We also observed specific cleavage of mRNA of housekeeping genes such as actin and ubiquitin during victorin-induced cell death. Interestingly, no victorin-induced mRNA degradation was detected with stress-responding genes such as PR-1, PR-10 and GPx throughout the experimental period. The RNA degradation mostly, but not always, occurred in parallel with DNA laddering, but pharmacological studies indicated that these processes are regulated by different signaling pathways with some overlapping upstream signals. [source]


A novel form of NF-,B is induced by Leishmania infection: Involvement in macrophage gene expression

EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 4 2008
David
Abstract Leishmania spp. are obligate intracellular parasites that inhabit the phagolysosomes of macrophages. Manipulation of host cell signaling pathways and gene expression by Leishmania is critical for Leishmania's survival and resultant pathology. Here, we show that infection of macrophages with Leishmania promastigotes in vitro causes specific cleavage of the NF-,B p65RelA subunit. Cleavage occurs in the cytoplasm and is dependent on the Leishmania protease gp63. The resulting fragment, p35RelA, migrates to the nucleus, where it binds DNA as a heterodimer with NF-,B p50. Importantly, induction of chemokine gene expression (MIP-2/CXCL2, MCP-1/CCL2, MIP-1,/CCL3, MIP-1,/CCL4) by Leishmania is NF-,B dependent, which implies that p35RelA/p50 dimers are able to activate transcription, despite the absence of a recognized transcriptional transactivation domain. NF-,B cleavage was observed following infection with a range of pathogenic species, including L.,donovani, L.,major, L.,mexicana, and L.,(Viannia) braziliensis, but not the non-pathogenic L.,tarentolae or treatment with IFN-,. These results indicate a novel mechanism by which a pathogen can subvert a macrophage's regulatory pathways to alter NF-,B activity. [source]


Affinity cleavage at the divalent metal site of porcine NAD-specific isocitrate dehydrogenase

PROTEIN SCIENCE, Issue 1 2000
Yu-Chu Huang
Abstract A divalent metal ion, such as Mn2+, is required for the catalytic reaction and allosteric regulation of pig heart NAD-dependent isocitrate dehydrogenase. The enzyme is irreversibly inactivated and cleaved by Fe2+ in the presence of O2 and ascorbate at pH 7.0. Mn2+ prevents both inactivation and cleavage. Nucleotide ligands, such as NAD, NADPH, and ADP, neither prevent nor promote inactivation or cleavage of the enzyme by Fe2+. The NAD-specific isocitrate dehydrogenase is composed of three distinct subunits in the ratio 2,:1 ,:1 ,. The results indicate that the oxidative inactivation and cleavage are specific and involve the 40 kDa , subunit of the enzyme. A pair of major peptides is generated during Fe2+ inactivation: 29.5 + 10.5 kDa, as determined by SDS-PAGE. Amino-terminal sequencing reveals that these peptides arise by cleavage of the Val262-His263 bond of the , subunit. No fragments are produced when enzyme is incubated with Fe2+ and ascorbate under denaturing conditions in the presence of 6 M urea, indicating that the native structure is required for the specific cleavage. These results suggest that His263 of the , subunit may be a ligand of the divalent metal ion needed for the reaction catalyzed by isocitrate dehydrogenase. Isocitrate enhances the inactivation of enzyme caused by Fe2+ in the presence of oxygen, but prevents the cleavage, suggesting that inactivation occurs by a different mechanism when metal ion is bound to the enzyme in the presence of isocitrate: oxidation of cysteine may be responsible for the rapid inactivation in this case. Affinity cleavage caused by Fe2+ implicates , as the catalytic subunit of the multisubunit porcine NAD-dependent isocitrate dehydrogenase. [source]


Proteolytic cleavage of the Chlamydia pneumoniae major outer membrane protein in the absence of Pmp10

PROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 24 2007
Nicolai Juul
Abstract The genome of the obligate intracellular bacteria Chlamydia pneumoniae contains 21 genes encoding polymorphic membrane proteins (Pmp). While no function has yet been attributed to the Pmps, they may be involved in an antigenic variation of the Chlamydia surface. It has previously been demonstrated that Pmp10 is differentially expressed in the C. pneumoniae CWL029 isolate. To evaluate whether the absence of Pmp10 in the outer membrane causes further changes to the C. pneumoniae protein profile, we subcloned the CWL029 isolate and selected a clone with minimal Pmp10 expression. Subsequently, we compared the proteome of the CWL029 isolate with the proteome of the subcloned strain and identified a specific cleavage of the C-terminal part of the major outer membrane protein (MOMP), which occurred only in the absence of Pmp10. In contrast, when Pmp10 was expressed we predominantly observed full-length MOMP. No other proteins appeared to be regulated according to the presence or absence of Pmp10. These results suggest a close association between MOMP and Pmp10, where Pmp10 may protect the C-terminal part of MOMP from proteolytic cleavage. [source]


Specific cleavage of ribosomal RNA and mRNA during victorin-induced apoptotic cell death in oat

THE PLANT JOURNAL, Issue 6 2006
Trinh X. Hoat
Summary Here we report that rRNA and mRNA are specifically degraded in oat (Avena sativa L.) cells during apoptotic cell death induced by victorin, a host-selective toxin produced by Cochliobolus victoriae. Northern analysis indicated that rRNA species from the cytosol, mitochondria and chloroplasts were all degraded via specific degradation intermediates during victorin-induced apoptotic cell death but, in contrast, they were randomly digested in necrotic cell death induced by 30 mm CuSO4 and heat shock. This indicates that specific rRNA cleavage could be controlled by an intrinsic program. We also observed specific cleavage of mRNA of housekeeping genes such as actin and ubiquitin during victorin-induced cell death. Interestingly, no victorin-induced mRNA degradation was detected with stress-responding genes such as PR-1, PR-10 and GPx throughout the experimental period. The RNA degradation mostly, but not always, occurred in parallel with DNA laddering, but pharmacological studies indicated that these processes are regulated by different signaling pathways with some overlapping upstream signals. [source]