Home About us Contact | |||
Specific Adaptations (specific + adaptation)
Selected AbstractsAdaptation, extinction and global changeEVOLUTIONARY APPLICATIONS (ELECTRONIC), Issue 1 2008Graham Bell Abstract We discuss three interlinked issues: the natural pace of environmental change and adaptation, the likelihood that a population will adapt to a potentially lethal change, and adaptation to elevated CO2, the prime mover of global change. 1.,Environmental variability is governed by power laws showing that ln difference in conditions increases with ln elapsed time at a rate of 0.3,0.4. This leads to strong but fluctuating selection in many natural populations. 2.,The effect of repeated adverse change on mean fitness depends on its frequency rather than its severity. If the depression of mean fitness leads to population decline, however, severe stress may cause extinction. Evolutionary rescue from extinction requires abundant genetic variation or a high mutation supply rate, and thus a large population size. Although natural populations can sustain quite intense selection, they often fail to adapt to anthropogenic stresses such as pollution and acidification and instead become extinct. 3.,Experimental selection lines of algae show no specific adaptation to elevated CO2, but instead lose their carbon-concentrating mechanism through mutational degradation. This is likely to reduce the effectiveness of the oceanic carbon pump. Elevated CO2 is also likely to lead to changes in phytoplankton community composition, although it is not yet clear what these will be. We emphasize the importance of experimental evolution in understanding and predicting the biological response to global change. This will be one of the main tasks of evolutionary biologists in the coming decade. [source] Variation in the diet of the Patagonian toothfish with size, depth and season around the Falkland IslandsJOURNAL OF FISH BIOLOGY, Issue 2 2003A. Arkhipkin The ontogenetic and seasonal variations in the feeding spectrum were studied in 756 specimens of the Patagonian toothfish Dissostichus eleginoides (16,159 cm total length, LT) collected on the shelf, continental slope and bathyal waters (67,1960 m, depth range) around the Falkland Islands between April 1999 and August 2002. On the shelf, small toothfish (<40 cm LT) were active predators taking mostly one relatively large prey item at a time (mainly near-bottom Patagonotothen ramsayi and Loligo gahi). Medium-size toothfish (40,60 cm LT) fed on the same prey, but the number of prey items increased to 1,2 items per fish. Large toothfish (>60 cm LT) switched their diet to other large pelagic fishes occurring near the bottom (Macruronus magellanicus and Micromesistius australis australis), again taking mostly one prey item at a time. The diet of medium-size D. eleginoides on the shelf varied seasonally depending on the abundance and migrations of the major prey species. Patagonotothen ramsayi was abundant in the diet throughout the year, whereas L. gahi appeared only from February to October during its offshore seasonal migrations to the depth range of D. eleginoides. During November to January, L. gahi migrated inshore to spawn and disappeared from the toothfish diet, being substituted by M. australis australis which dispersed on the shelf after spawning. After its ontogenetic descent to the lower part of the continental slope (500,1000 m depths), toothfish took less active (than on the shelf) fishes such as Antimora rostrata whilst also feeding on active near-bottom macrourids and skates. In their deepest habitat (>1000 m depths), toothfish became a typical opportunistic predator, feeding mainly on relatively small and inactive fishes, squids and prawn-like crustaceans Acanthephyra pelagica and Thymops birsteini. Decrease in hunting activity with depth could be related to a specific adaptation to keep neutral buoyancy by increase of lipid content in white muscles of D. eleginoides with size. [source] Salt-resistant and salt-sensitive wheat genotypes show similar biochemical reaction at protein level in the first phase of salt stressJOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, Issue 4 2006Muhammad Saqib Abstract Salinity has a two-phase effect on plant growth, an osmotic effect due to salts in the outside solution and ion toxicity in a second phase due to salt build-up in transpiring leaves. To elucidate salt-resistance mechanisms in the first phase of salt stress, we studied the biochemical reaction of salt-resistant and salt-sensitive wheat (Triticum aestivum L.) genotypes at protein level after 10 d exposure to 125 mM,NaCl salinity (first phase of salt stress) and the variation of salt resistance among the genotypes after 30 d exposure to 125 mM,NaCl salinity (second phase of salt stress) in solution culture experiments in a growth chamber. The three genotypes differed significantly in absolute and relative shoot and root dry weights after 30 d exposure to NaCl salinity. SARC-1 produced the maximum and 7-Cerros the minimum shoot dry weights under salinity relative to control. A highly significant negative correlation (r2 = ,0.99) was observed between salt resistance (% shoot dry weight under salinity relative to control) and shoot Na+ concentration of the wheat genotypes studied. However, the salt-resistant and salt-sensitive genotypes showed a similar biochemical reaction at the level of proteins after 10 d exposure to 125 mM NaCl. In both genotypes, the expression of more than 50% proteins was changed, but the difference between the genotypes in various categories of protein change (up-regulated, down-regulated, disappeared, and new-appeared) was only 1%,8%. It is concluded that the initial biochemical reaction to salinity at protein level in wheat is an unspecific response and not a specific adaptation to salinity. [source] Nursery pollination by a moth in Silene latifolia: the role of odours in eliciting antennal and behavioural responsesNEW PHYTOLOGIST, Issue 4 2006S. Dötterl Summary ,,Since the 1970s it has been known that the nursery pollinator Hadena bicruris is attracted to the flowers of its most important host plant, Silene latifolia, by their scent. Here we identified important compounds for attraction of this noctuid moth. ,,Gas chromatographic and electroantennographic methods were used to detect compounds eliciting signals in the antennae of the moth. Electrophysiologically active compounds were tested in wind-tunnel bioassays to foraging naďve moths, and the attractivity of these compounds was compared with that to the natural scent of whole S. latifolia flowers. ,,The antennae of moths detected substances of several classes. Phenylacetaldehyde elicited the strongest signals in the antennae, but lilac aldehydes were the most attractive compounds in wind-tunnel bioassays and attracted 90% of the moths tested, as did the scent of single flowers. ,,Our results show that the most common and abundant floral scent compounds in S. latifolia, lilac aldehydes, attracted most of the moths tested, indicating a specific adaptation of H. bicruris to its host plant. [source] Preference and performance of the hyperparasitoid Syrphophagus aphidivorus (Hymenoptera: Encyrtidae): fitness consequences of selecting hosts in live aphids or aphid mummiesECOLOGICAL ENTOMOLOGY, Issue 6 2004R. Buitenhuis Abstract., 1.,Theoretical models predict that ovipositional decisions of parasitoid females should lead to the selection of the most profitable host for parasitoid development. Most parasitoid species have evolved specific adaptations to exploit a single host stage. However, females of the aphid hyperparasitoid Syrphophagous aphidivorus (Mayr) (Hymenoptera: Encyrtidae) display a unique and atypical oviposition behaviour by attacking either primary parasitoid larvae in live aphids, or parasitoid pupae in dead, mummified aphids. 2.,In the laboratory, the correlation between host suitability and host preference of S. aphidivorus on the host Aphidius nigripes Ashmead parasitising the aphid Macrosiphum euphorbiae (Thomas) was investigated. 3.,The relative suitability of the two host stages was determined by measuring hyperparasitoid fitness parameters (survival, development time, fecundity, sex ratio, and adult size of progeny), and calculating the intrinsic rate of population increase (rm). Host preference by S. aphidivorus females and the influence of aphid defence behaviour on host selection was also examined. 4.,Hyperparasitoid offspring performance was highest when developing from hosts in aphid mummies and females consistently preferred this host to hosts in parasitised aphids. Although aphid defensive behaviour may influence host selection, it was not a determining factor. Ecological and evolutionary processes that might have led to dual oviposition behaviour in S. aphidivorus are discussed. [source] Protection of DNA during early development: adaptations and evolutionary consequencesEVOLUTION AND DEVELOPMENT, Issue 1 2003David Epel SUMMARY The rapidly dividing cleavage stages of embryos do not have the typical responses to cell damage, such as induction of the heat shock response, use of mitotic checkpoints, or use of apoptosis to eliminate severely damaged cells. This could create problems with integrity of DNA, but the solution in these embryos appears to be a "be prepared" approach, in which specific adaptations are used to minimize DNA damage during cleavage and the use of apoptosis at the mid-blastula transition to remove any cells that were nevertheless damaged. It has been assumed that this approach has evolved because of the advantage of rapid production of a motile larvae. Alternatively, this particular approach may have the selective advantage of increasing mutation rate when there are greater environmental stresses. This could provide more variants on which selective pressures could act and thus accelerate evolution during environmentally stressful periods. [source] Effects of climate and local aridity on the latitudinal and habitat distribution of Arvicanthis niloticus and Arvicanthis ansorgei (Rodentia, Murinae) in MaliJOURNAL OF BIOGEOGRAPHY, Issue 1 2004B. Sicard Abstract Introduction, The genus Arvicanthis (Lesson 1842) (Rodentia: Murinae), usually referred to as the unstriped grass rat, is mainly distributed in savanna and grassland habitats of Sub-Saharan Africa. Among the four chromosomal forms of Arvicanthis recently differentiated in Western and Central Africa, the one with a diploid chromosomal number (2n) of 62 and an autosomal fundamental number (NFa) of 62 or 64 is ascribed to Arvicanthis niloticus (Demarest 1822), while the one with 2n = 62 and a NFa between 74 and 76 is referred to A. ansorgei (Thomas 1910). Despite the broad area of sympatry recently uncovered along the inner delta of the Niger river in Mali [details in Volobouev et al. (2002) Cytogenetics and Genome Research, 96, 250,260], the distribution of the two species is largely parapatric and follows the latitudinal patterns of the West-African biogeographical domains, which are related to the latitudinal patterns of annual rainfall in this region. Here, we analyse the suggestion that the two species show specific adaptations to differences in climate aridity. Methods, Karyologically screened animals were sampled in 19 localities in seasonally flooded regions located along the ,Niger' river in Mali and extending from 1100 to 200 mm of mean annual rainfall. The analysis of trapping success (TS) data allowed us to investigate the respective effects of climate (i.e. annual rainfall) and local (i.e. duration of the green herbaceous vegetation) aridity on the latitudinal and habitat distribution of the two species. Conclusions, The broad zone of sympatry was found to correspond to a northward expansion of the recognized distribution area of A. ansorgei. TS values indicated that the two species responded very differently to climatic and local conditions of aridity. Arvicanthis ansorgei decreased in TS as regional conditions became more arid; a similar trend was also observed within regions where habitat occupancy decreased with local aridity. The higher TS observed in the most humid habitat relative to the others persisted throughout the latitudinal rainfall gradient. In contrast, TS of A. niloticus increased with latitudinal aridity. This species was present in more arid habitats than A. ansorgei from 1000 mm down to 400 mm of mean annual rainfall where a shift to the most humid habitat occurred. These opposite trends in TS distribution between species suggest that A. ansorgei is less adapted than A. niloticus to arid environments at both a regional and habitat level; thus, A. ansorgei would be able to invade dry regions only along the extensive floodplains bordering the inner delta of the ,Niger' river. Several biological traits that may be involved in limiting the southward distribution of A. niloticus are discussed. [source] Histological and ultrastructural aspects of the nasal complex in the harbour porpoise, Phocoena phocoenaJOURNAL OF MORPHOLOGY, Issue 11 2009Susanne Prahl Abstract During the evolution of odontocetes, the nasal complex was modified into a complicated system of passages and diverticulae. It is generally accepted that these are essential structures for nasal sound production. However, the mechanism of sound generation and the functional significance of the epicranial nasal complex are not fully understood. We have studied the epicranial structures of harbor porpoises (Phocoena phocoena) using light and electron microscopy with special consideration of the nasal diverticulae, the phonic lips and dorsal bursae, the proposed center of nasal sound generation. The lining of the epicranial respiratory tract with associated diverticulae is consistently composed of a stratified squamous epithelium with incomplete keratinization and irregular pigmentation. It consists of a stratum basale and a stratum spinosum that transforms apically into a stratum externum. The epithelium of the phonic lips comprises 70,80 layers of extremely flattened cells, i.e., four times more layers than in the remaining epicranial air spaces. This alignment and the increased number of desmosomes surrounding each cell indicate a conspicuous rigid quality of the epithelium. The area surrounding the phonic lips and adjacent fat bodies exhibits a high density of mechanoreceptors, possibly perceiving pressure differentials and vibrations. Mechanoreceptors with few layers and with perineural capsules directly subepithelial of the phonic lips can be distinguished from larger, multi-layered mechanoreceptors without perineural capsules in the periphery of the dorsal bursae. A blade-like elastin body at the caudal wall of the epicranial respiratory tract may act as antagonist of the musculature that moves the blowhole ligament. Bursal cartilages exist in the developmental stages from fetus through juvenile and could not be verified in adults. These histological results support the hypothesis of nasal sound generation for the harbor porpoise and display specific adaptations of the echolocating system in this species. J. Morphol. 2009. © 2009 Wiley-Liss, Inc. [source] Community as a factor in implementing interorganizational partnerships: Issues, constraints, and adaptationsNONPROFIT MANAGEMENT & LEADERSHIP, Issue 1 2003Elizabeth A. Mulroy This article reports findings from a community-based study of collaboration among seven nonprofit human service agencies in a very low-income urban neighborhood. The project, funded by a federal demonstration grant, was developed to prevent child abuse and neglect as an alternative to the existing public child welfare system. Findings suggest that privatization, funding uncertainties, and community-level factors posed external stressors that constrained executives' ability to collaborate. The article identifies five key stressors, analyzes how each constrained the partnership, and then discusses specific adaptations made by executive leadership in political, technical, and interpersonal areas that facilitated strategic adjustment and realignment in a very complex interorganizational arrangement and set of relationships. Finally, implications are drawn for nonprofit managers, social policy, and nonprofit research. [source] |