Species Status (species + status)

Distribution by Scientific Domains
Distribution within Life Sciences


Selected Abstracts


Gene trees: A powerful tool for exploring the evolutionary biology of species and speciation

PLANT SPECIES BIOLOGY, Issue 3 2000
Alan R. Templeton
Abstract Evolutionary trees can be constructed from the haplotypes observed with molecular surveys of sequence or restriction site variation. Such gene trees can be constructed regardless of whether or not all of the individual specimens came from one or many species. Hence, these gene trees can straddle the species/population interface, thereby providing a powerful tool for studying the meaning of species and the process of speciation. We illustrate how historical approaches using gene trees can be used to separate the effects of population structure from population history, in order to rigorously test the species status of a group, and to test hypotheses about the process of speciation. A worked example of species status in the Piriqueta caroliniana complex is presented. Species status is evaluated under the cohesion species concept that defines a species as an evolutionary lineage with boundaries arising from the forces that create reproductive communities. Such forces are collectively called cohesion mechanisms and consist of two main subtypes: (i) genetic exchangeability, and (ii) ecological interchangeability. To make this definition operational, populations that behave as separate evolutionary lineages are first identified. A method is reviewed for inferring lineages using explicit statistical criteria from geographic overlays upon gene trees. Once lineages have been identified, the next step is to use the cohesion mechanisms to identify candidate traits that should contribute to genetic exchangeability and/or ecological interchangeability. The cohesion species are then identified by performing overlays upon gene trees in order to identify significant transitions in the candidate traits. Cohesion species are recognized only when statistically significant reproductive/ecological transitions occur that are concordant with the lineages defined earlier. This data-rich method of recognizing species automatically generates much information about the biogeography, population structure, historical events, and ecology and/or reproductive biology of the group under study. In turn, this information provides much insight into the process of speciation. It also makes the criteria, data, methods of analysis and degree of support for the species inference completely explicit, thereby avoiding confusion, inconsistency and artificial controversies that plague much of the literature on species concepts. [source]


Conservation Status as a Biodiversity Trend Indicator: Recommendations from a Decade of Listing Species at Risk in British Columbia

CONSERVATION BIOLOGY, Issue 4 2005
JAMES F. QUAYLE
especies amenazadas; especies en peligro; estado del ambiente Abstract:,Species conservation status is commonly used as a broad-scale indicator of the state of biological diversity. To learn about its value for tracking trends, we examined provincial lists of terrestrial vertebrate species and subspecies at risk in British Columbia, Canada, for 1992 and 2002 to see whether changes in these lists reflected changes in the status of the taxa they represent. Examination of the case histories of individual species and subspecies showed that 65% of additions and deletions to the British Columbia Red List were the result of improvement in knowledge of species status, changes in assessment procedures, and refinements in taxonomy rather than actual changes in a species' status. Comparison to an alternate set of rank scores provided by NatureServe for taxa that appeared on both 1992 and 2002 British Columbia Red Lists revealed changes in status that were not reflected by movement from the list. Estimates of historical conservation status for species on the 1992 British Columbia Red List demonstrated ambiguity around the natural baseline with regard to tracking changes in list composition over time. We discourage the continued use of indicators based solely on conservation status as a means of tracking biodiversity. Instead we recommend advancing strategic indicators around species at risk based on long-term monitoring data, deliberate and explicitly stated baselines, and consistent methods of conservation ranking. Resumen:,El estatus de conservación de las especies comúnmente es utilizado como un indicador de escala amplia del estado de la diversidad biológica. En un esfuerzo por aprender sobre su valor para el seguimiento de tendencias, examinamos listas provinciales, para 1992 y 2002, de especies y subespecies de vertebrados terrestres en riesgo en Columbia Británica, Canadá, para ver si los cambios en estas listas reflejaban cambios en el estatus de los taxa que representan. El examen de la historia del caso de especies y subespecies individuales mostró que 65% de las adiciones y supresiones en la Lista Roja de Columbia Británica fueron el resultado de avances en el conocimiento del estatus de la especie, de cambios en los procedimientos de evaluación y de refinamientos en la taxonomía y no de cambios en el estatus de una especie. La comparación con un conjunto alternativo de valores de clasificación proporcionado por NatureServe para taxa que aparecieron tanto en la Lista Roja de Columbia Británica de 1992 como de 2002 reveló cambios en el estatus que no se reflejaron en movimientos en la lista. Estimaciones del estatus de conservación histórico de especies en la Lista Roja de Columbia Británica de 1992 demostraron ambigüedad alrededor de la línea de base natural en relación con el seguimiento de cambios en el tiempo en la composición de la lista. Desalentamos el uso continuo de indicadores basados solamente en el estatus de conservación como un medio para el seguimiento de biodiversidad. En cambio, recomendamos avanzar con indicadores estratégicos en torno a especies en riesgo con base en datos de monitoreo de largo plazo, en líneas básicas puestas de manifiesto deliberada y explícitamente y en métodos consistentes para la clasificación de la conservación. [source]


THE BIOLOGY OF SPECIATION

EVOLUTION, Issue 2 2010
James M. Sobel
Since Darwin published the "Origin," great progress has been made in our understanding of speciation mechanisms. The early investigations by Mayr and Dobzhansky linked Darwin's view of speciation by adaptive divergence to the evolution of reproductive isolation, and thus provided a framework for studying the origin of species. However, major controversies and questions remain, including: When is speciation nonecological? Under what conditions does geographic isolation constitute a reproductive isolating barrier? and How do we estimate the "importance" of different isolating barriers? Here, we address these questions, providing historical background and offering some new perspectives. A topic of great recent interest is the role of ecology in speciation. "Ecological speciation" is defined as the case in which divergent selection leads to reproductive isolation, with speciation under uniform selection, polyploid speciation, and speciation by genetic drift defined as "nonecological." We review these proposed cases of nonecological speciation and conclude that speciation by uniform selection and polyploidy normally involve ecological processes. Furthermore, because selection can impart reproductive isolation both directly through traits under selection and indirectly through pleiotropy and linkage, it is much more effective in producing isolation than genetic drift. We thus argue that natural selection is a ubiquitous part of speciation, and given the many ways in which stochastic and deterministic factors may interact during divergence, we question whether the ecological speciation concept is useful. We also suggest that geographic isolation caused by adaptation to different habitats plays a major, and largely neglected, role in speciation. We thus provide a framework for incorporating geographic isolation into the biological species concept (BSC) by separating ecological from historical processes that govern species distributions, allowing for an estimate of geographic isolation based upon genetic differences between taxa. Finally, we suggest that the individual and relative contributions of all potential barriers be estimated for species pairs that have recently achieved species status under the criteria of the BSC. Only in this way will it be possible to distinguish those barriers that have actually contributed to speciation from those that have accumulated after speciation is complete. We conclude that ecological adaptation is the major driver of reproductive isolation, and that the term "biology of speciation," as proposed by Mayr, remains an accurate and useful characterization of the diversity of speciation mechanisms. [source]


MATHEMATICAL CONSEQUENCES OF THE GENEALOGICAL SPECIES CONCEPT

EVOLUTION, Issue 8 2002
Richard R. Hudson
Abstract A genealogical species is defined as a basal group of organisms whose members are all more closely related to each other than they are to any organisms outside the group ("exclusivity'), and which contains no exclusive group within it. In practice, a pair of species is so defined when phylogenies of alleles from a sample of loci shows them to be reciprocally monophyletic at all or some specified fraction of the loci. We investigate the length of time it takes to attain this status when an ancestral population divides into two descendant populations of equal size with no gene exchange, and when genetic drift and mutation are the only evolutionary forces operating. The number of loci used has a substantial effect on the probability of observing reciprocal monophyly at different times after population separation, with very long times needed to observe complete reciprocal monophyly for a large number of loci. In contrast, the number of alleles sampled per locus has a relatively small effect on the probability of reciprocal monophyly. Because a single mitochondrial or chloroplast locus becomes reciprocally monophyletic much faster than does a single nuclear locus, it is not advisable to use mitochondrial and chloroplast DNA to recognize genealogical species for long periods after population divergence. Using a weaker criterion of assigning genealogical species status when more than 50% of sampled nuclear loci show reciprocal monophyly, genealogical species status depends much less on the number of sampled loci, and is attained at roughly 4,7 N generations after populations are isolated, where N is the historically effective population size of each descendant. If genealogical species status is defined as more than 95% of sampled nuclear loci showing reciprocal monophyly, this status is attained after roughly 9,12 N generations. [source]


Complete lack of mitochondrial divergence between two species of NE Atlantic marine intertidal gastropods

JOURNAL OF EVOLUTIONARY BIOLOGY, Issue 10 2009
P. KEMPPAINEN
Abstract Some mitochondrial introgression is common between closely related species, but distinct species rarely show substantial introgression in their entire distribution range. In this study, however, we report a complete lack of mitochondrial divergence between two sympatric species of flat periwinkles (Littorina fabalis and Littorina obtusata) which, based on previous allozyme studies, diverged approximately 1 Ma. We re-examined their species status using both morphology (morphometric analysis) and neutral genetic markers (microsatellites) and our results confirmed that these species are well separated. Despite this, the two species shared all common cytochrome-b haplotypes throughout their NE Atlantic distribution and no deep split between typical L. fabalis and L. obtusata haplotypes could be found. We suggest that incomplete lineage sorting explains most of the lack of mitochondrial divergence between these species. However, coalescent-based analyses and the sympatric sharing of unique haplotypes suggest that introgressive hybridization also has occurred. [source]


Song perception among incipient species as a mechanism for reproductive isolation

JOURNAL OF EVOLUTIONARY BIOLOGY, Issue 3 2008
M. BRAMBILLA
Abstract Many functions in behavioural processes of small passerines are regulated via vocal messages. Song plays an important role in the development of reproductive barriers and thus playback experiments can often be used for investigating the potential for reproductive isolation through behavioural mechanisms. Moltoni's warbler Sylvia (cantillans) moltonii is characterized by diagnostic vocalizations and a peculiar pattern of distribution, being parapatric and partly sympatric with the nominate Sylvia c. cantillans. With this work, we test whether these two closely related taxa react equally to their own song and to the song of the other taxon, shedding light on whether they perceive each other's songs as coming from the same species. We carried out 184 playback experiments within the mainland range of the two forms. We judged the response of the bird on a scale of scores. Each taxon responded more strongly to playback when faced with the song of its own taxon. This held true when applied only to males or females. Additionally, birds tested for both songs showed a stronger response to the song of their own taxon. The distributional context (sympatry vs. allopatry) did not affect bird response. Results indicate that a certain degree of reproductive isolation between the two taxa (because of diverged mate recognition systems) already exists; consistently with genetic data and with the peculiar pattern of distribution; this suggests that the two taxa have reached species status. [source]


Isolates of Microdochium nivale and M. majus Differentiated by Pathogenicity on Perennial Ryegrass (Lolium perenne L.) and in vitro Growth at Low Temperature

JOURNAL OF PHYTOPATHOLOGY, Issue 5 2006
I. S. Hofgaard
Abstract Pink snow mould is a serious disease on grasses and winter cereals in cold and temperate zones during winter. To better understand the basis for the variation in pathogenicity between different isolates of Microdochium nivale and M. majus and to simplify selection of highly pathogenic isolates to use when screening for resistance to pink snow mould in perennial ryegrass, we sought traits correlated with pathogenicity. Isolates of M. nivale were more pathogenic on perennial ryegrass than isolates of M. majus, as measured by survival and regrowth of perennial ryegrass after infection and incubation under simulated snow cover. Pathogenicity as measured by relative regrowth was highly correlated with fungal growth rate on potato dextrose agar (PDA) at 2°C. Measuring fungal growth on PDA therefore seems to be a relatively simple method of screening for potentially highly pathogenic isolates. In a study of a limited number of isolates, highly pathogenic isolates showed an earlier increase and a higher total specific activity of , -glucosidase, a cell wall-degrading enzyme, compared with less pathogenic isolates. None of the M. majus isolates was highly pathogenic on perennial ryegrass. Our results indicate biological differences between M. nivale and M. majus and thus strengthen the recently published sequence-based evidence for the elevation of these former varieties to species status. [source]


Validity of species status of the parasitic mite Otodectes cynotis

MEDICAL AND VETERINARY ENTOMOLOGY, Issue 2 2002
J. Lohse
Abstract A combined molecular and phenotypic approach was used to determine whether ear mites of the genus Otodectes (Acari: Psoroptidae) belong to a single species. The second internal transcribed spacer (ITS 2) of the rDNA of 16 isolates from 11 cats, two dogs, one arctic fox and two ferrets originating from four different continents was characterized. In addition, mites from dog, cat and arctic fox were investigated morphologically. Sequence comparisons revealed five different, but closely related genotypes which did not segregate according to host species or geographical origin. Morphologically, mites of the three host species did not differ significantly in their body or leg sizes. These investigations support the view that ear mites of the genus Otodectes from different hosts and geographical origins belong to a single species, Otodectes cynotis (Hering). [source]


Population genetics of Galápagos land iguana (genus Conolophus) remnant populations

MOLECULAR ECOLOGY, Issue 23 2008
ATHANASIA C. TZIKA
Abstract The Galápagos land iguanas (genus Conolophus) have faced significant anthropogenic disturbances since the 17th century, leading to severe reduction of some populations and the extinction of others. Conservation activities, including the repatriation of captive-bred animals to depleted areas, have been ongoing since the late 1970s, but genetic information has not been extensively incorporated. Here we use nine species-specific microsatellite loci of 703 land iguanas from the six islands where the species occur today to characterize the genetic diversity within, and the levels of genetic differentiation among, current populations as well as test previous hypotheses about accidental translocations associated with early conservation efforts. Our analyses indicate that (i) five populations of iguanas represent distinct conservation units (one of them being the recently discovered rosada form) and could warrant species status, (ii) some individuals from North Seymour previously assumed to be from the natural Baltra population appear related to both Isabela and Santa Cruz populations, and (iii) the five different management units exhibit considerably different levels of intrapopulation genetic diversity, with the Plaza Sur and Santa Fe populations particularly low. Although the initial captive breeding programmes, coupled with intensive efforts to eradicate introduced species, saved several land iguana populations from extinction, our molecular results provide objective data for improving continuing in situ species survival plans and population management for this spectacular and emblematic reptile. [source]


How many species of cichlid fishes are there in African lakes?

MOLECULAR ECOLOGY, Issue 3 2001
George F. Turner
Abstract The endemic cichlid fishes of Lakes Malawi, Tanganyika and Victoria are textbook examples of explosive speciation and adaptive radiation, and their study promises to yield important insights into these processes. Accurate estimates of species richness of lineages in these lakes, and elsewhere, will be a necessary prerequisite for a thorough comparative analysis of the intrinsic and extrinsic factors influencing rates of diversification. This review presents recent findings on the discoveries of new species and species flocks and critically appraises the relevant evidence on species richness from recent studies of polymorphism and assortative mating, generally using behavioural and molecular methods. Within the haplochromines, the most species-rich lineage, there are few reported cases of postzygotic isolation, and these are generally among allopatric taxa that are likely to have diverged a relatively long time in the past. However, many taxa, including many which occur sympatrically and do not interbreed in nature, produce viable, fertile hybrids. Prezygotic barriers are more important, and persist in laboratory conditions in which environmental factors have been controlled, indicating the primary importance of direct mate preferences. Studies to date indicate that estimates of alpha (within-site) diversity appear to be robust. Although within-species colour polymorphisms are common, these have been taken into account in previous estimates of species richness. However, overall estimates of species richness in Lakes Malawi and Victoria are heavily dependent on the assignation of species status to allopatric populations differing in male colour. Appropriate methods for testing the specific status of allopatric cichlid taxa are reviewed and preliminary results presented. [source]


Microsatellite DNA markers for population-genetic studies of blue mackerel (Scomber australasicus) and cross-specific amplification in S. japonicus

MOLECULAR ECOLOGY RESOURCES, Issue 3 2009
C. Y. TANG
Abstract Blue mackerel (Scomber australasicus) is targeted by large-scale purse-seiners in the western North Pacific, and its stock structure is still contentious. Herein, we described 10 polymorphic microsatellite loci for blue mackerel. The number of alleles among 32 individuals surveyed ranged from five to 27 (average of 16.2 alleles per locus). Departures from Hardy,Weinberg expectation were observed at two loci. Cross-specific amplification in the congener, S. japonicus, was successful, except for one locus, revealed to be diagnostic for these congeners. These microsatellite loci will be useful tools to address queries in population genetic structure, fishery management unit and taxonomic species status in the genus Scomber. [source]


DNA barcode discovers two cryptic species and two geographical radiations in the invasive drosophilid Zaprionus indianus

MOLECULAR ECOLOGY RESOURCES, Issue 3 2008
AMIR YASSIN
Abstract Comparing introduced to ancestral populations within a phylogeographical context is crucial in any study aiming to understand the ecological genetics of an invasive species. Zaprionus indianus is a cosmopolitan drosophilid that has recently succeeded to expand its geographical range upon three continents (Africa, Asia and the Americas). We studied the distribution of mitochondrial DNA (mtDNA) haplotypes for two genes (CO-I and CO-II) among 23 geographical populations. mtDNA revealed the presence of two well-supported phylogenetic lineages (phylads), with bootstrap value of 100%. Phylad I included three African populations, reinforcing the African-origin hypothesis of the species. Within phylad II, a distinct phylogeographical pattern was discovered: Atlantic populations (from the Americas and Madeira) were closer to the ancestral African populations than to Eastern ones (from Madagascar, Middle East and India). This means that during its passage from endemism to cosmopolitanism, Z. indianus exhibited two independent radiations, the older (the Eastern) to the East, and the younger (the Atlantic) to the West. Discriminant function analysis using 13 morphometrical characters was also able to discriminate between the two molecular phylads (93.34 ± 1.67%), although detailed morphological analysis of male genitalia using scanning electron microscopy showed no significant differences. Finally, crossing experiments revealed the presence of reproductive barrier between populations from the two phylads, and further between populations within phylad I. Hence, a bona species status was assigned to two new, cryptic species: Zaprionus africanus and Zaprionus gabonicus, and both were encompassed along with Z. indianus and Zaprionus megalorchis into the indianus complex. The ecology of these two species reveals that they are forest dwellers, which explains their restricted endemic distribution, in contrast to their relative cosmopolitan Z. indianus, known to be a human-commensal. Our results reconfirm the great utility of mtDNA at both inter- and intraspecific analyses within the frame of an integrated taxonomical project. [source]


Gene trees: A powerful tool for exploring the evolutionary biology of species and speciation

PLANT SPECIES BIOLOGY, Issue 3 2000
Alan R. Templeton
Abstract Evolutionary trees can be constructed from the haplotypes observed with molecular surveys of sequence or restriction site variation. Such gene trees can be constructed regardless of whether or not all of the individual specimens came from one or many species. Hence, these gene trees can straddle the species/population interface, thereby providing a powerful tool for studying the meaning of species and the process of speciation. We illustrate how historical approaches using gene trees can be used to separate the effects of population structure from population history, in order to rigorously test the species status of a group, and to test hypotheses about the process of speciation. A worked example of species status in the Piriqueta caroliniana complex is presented. Species status is evaluated under the cohesion species concept that defines a species as an evolutionary lineage with boundaries arising from the forces that create reproductive communities. Such forces are collectively called cohesion mechanisms and consist of two main subtypes: (i) genetic exchangeability, and (ii) ecological interchangeability. To make this definition operational, populations that behave as separate evolutionary lineages are first identified. A method is reviewed for inferring lineages using explicit statistical criteria from geographic overlays upon gene trees. Once lineages have been identified, the next step is to use the cohesion mechanisms to identify candidate traits that should contribute to genetic exchangeability and/or ecological interchangeability. The cohesion species are then identified by performing overlays upon gene trees in order to identify significant transitions in the candidate traits. Cohesion species are recognized only when statistically significant reproductive/ecological transitions occur that are concordant with the lineages defined earlier. This data-rich method of recognizing species automatically generates much information about the biogeography, population structure, historical events, and ecology and/or reproductive biology of the group under study. In turn, this information provides much insight into the process of speciation. It also makes the criteria, data, methods of analysis and degree of support for the species inference completely explicit, thereby avoiding confusion, inconsistency and artificial controversies that plague much of the literature on species concepts. [source]


Determining the species status of one of the world's rarest frogs: a conservation dilemma

ANIMAL CONSERVATION, Issue 1 2001
Andrew Holyoake
New Zealand's native frogs (genus Leiopelma) are considered to be archaic amphibians of exceptional scientific interest that appear to have remained virtually unchanged for 160-200 million years. They are among the rarest extant amphibians and are highly restricted in distribution, confined to isolated, highly disjunct, populations on the North Island and a few small offshore islands in Cook Strait. Previous investigations have suggested, based on patterns of allozyme variation, that the Stephens Island frog (Leiopelma hamiltoni) and Archey's frog (L. archeyi) are sister taxa to the exclusion of the Maud Island frog, a species in close geographical proximity to the Stephens Island frog and previously viewed as a population of this species. As a consequence of these data, a new species, L. pakeka, the Maud Island Frog, has been described. This new species definition has dramatically enhanced the conservation status of L. hamiltoni, of which there are probably fewer than 150 individuals. In this study we re-examine the systematics of the Leiopelmatidae using mtDNA sequence analyses. Partial 12 S ribosomal RNA and cytochrome b (Cyt b) gene sequences were obtained for 57 frogs from six populations representing all four extant Leiopelma species. Contrary to previous reports we find L. pakeka and L. hamiltoni to be monophyletic. The amount of variation evident between these present species (<1% for Cyt b) is comparable to that seen between populations of L. archeyi. Based on these data, classification of L. pakeka and L. hamiltoni as separate species appears to be unwarranted, but they may be sufficiently distinct to warrant classification as evolutionarily significant units. [source]


How common are dot-like distributions?

BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 1 2010
Taxonomical oversplitting in western European Agrodiaetus (Lepidoptera: Lycaenidae) revealed by chromosomal, molecular markers
Approximately 50 taxa of butterflies in Western Europe have been described as new species or elevated to the level of species during the last 40 years. Many, especially those belonging to the genus Agrodiaetus, have unusually localized, ,dot-like' distributional ranges. In the present study, we use a combination of chromosomal and molecular markers to re-evaluate the species status of Agrodiaetus distributed west of the 17th meridian. The results obtained do not support the current designations of Agrodiaetus galloi, Agrodiaetus exuberans, and Agrodiaetus agenjoi as endemic species with highly restricted distribution ranges, but indicate that these taxa are more likely to be local populations of a widely distributed species, Agrodiaetus ripartii. Agrodiaetus violetae is shown to be a polytypic species consisting of at least two subspecies, including Agrodiaetus violetae subbaeticuscomb. nov. and Agrodiaetus violetae violetae. Agrodiaetus violetae is genetically (but not chromosomally) distinct from Agrodiaetus fabressei and has a wider distribution in southern Spain than previously believed. Agrodiaetus humedasae from northern Italy is supported as a highly localized species that is distinct from its nearest relatives. We propose a revision of the species lists for Agrodiaetus taking these new data into account. The results reported in the present study are relevant to animal conservation efforts in Europe because of their implications for IUCN Red List priorities. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 101, 130,154. [source]


Molecular phylogeny and evolution of the Asian lineage of vole genus Microtus (Rodentia: Arvicolinae) inferred from mitochondrial cytochrome b sequence

BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 3 2010
ANNA A. BANNIKOVA
To examine phylogenetic relationships within the Asian lineage of voles (Microtus) belonging to subgenus Alexandromys, the mitochondrial cytochrome b gene (cytb) was sequenced for its representatives, and the results were compared with the cytogenetic, morphological, and paleontological data. In all the trees inferred from maximum likelihood, parsimony, and Bayesian phylogenetic analyses, the Asian clade is subdivided into highly supported Alexandromys s.s. and moderately supported Pallasiinus lineages. Four subclades are recovered within Alexandromys: (1) Microtus maximowiczii and Microtus sachalinensis; (2) Microtus miiddendorffii s.l., Microtus mongolicus and Microtus gromovi; (3) Microtus fortis; and (4) Microtus limnophilus. Thus, M. limnophilus demonstrates clear affinities to Alexandromys s.s. but not to Microtus oeconomus (subgenus Pallasiinus), which was always regarded as its sibling species. The results obtained indicate M. mongolicus as a member of Alexandromys but not of the Microtus arvalis group, thus being concordant with the cytogenetic data. The mitochondrial data support the species status of M. gromovi; moreover, its placement as a part of a trichotomy with M. miiddendorffii s.l. and M. mongolicus contradicts the traditional affiliation of M. gromovi with M. maximowiczii. The divergence rate of cytb third position transversions in Microtus is estimated at approximately 8% per Myr, which corresponds to approximately 30% per Myr for all substitution types at all codon positions. The maximum likelihood distance based on complete sequence showed a tendency for a progressive underestimation of divergence and time for older splits. According to our molecular clock analysis employing nonlinear estimation methods, the split between Alexandromys and Pallasiinus and basal radiation within Alexandromys date back to approximately 1.2 Mya and 800 Kya, respectively. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99, 595,613. [source]


Patterns of cryptic hybridization revealed using an integrative approach: a case study on genets (Carnivora, Viverridae, Genetta spp.) from the southern African subregion

BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 1 2005
PHILIPPE GAUBERT
Recent years have seen the development of molecular-based methodologies to investigate hybridization and its impact on the evolutionary process. However, morphological characterization of hybrid zones has only scantily been considered, especially in zootaxa. Thus, the level of congruence between molecular and morphological characters when attempting to detect hybrids remains a poorly tackled area. The genets (genus Genetta) provide an ideal case study for further investigation of the respective contribution of morphology and DNA in hybrid zone characterization because (1) their morphology has recently been exhaustively explored and (2) the existence of hybrid zones in southern Africa was proposed in the literature. We assessed levels of hybridization among the southern African genets, and questioned the role of ecological factors on the hybridization patterns detected. We used an integrative approach involving nine discrete morphological characters and a diagnostic discriminant function, geometric morphometrics and sequences of cytochrome b including collection specimens. The combination of independent materials allowed us to accurately reassess the level of hybridization in southern African genets, and revealed cryptic, interspecific gene flows. Morphology unambiguously detected a low number of G. maculata × G. tigrina hybrids and rejected the hypothesis of a large intergradation zone in KwaZulu-Natal, thus supporting the species status of the two genets. Cytochrome b analyses revealed: (1) cryptic, massive hybridization between G. tigrina and the sympatric G. felina, and (2) a trace of reticulation (one sequence) between G. tigrina and the allopatric G. genetta. The type specimen of G. mossambica Matschie, 1902 is considered to be a morphological hybrid between G. maculata and G. angolensis. Remarkably, the morphological approaches (discrete characters and morphometrics) proved complementary to conclusions derived from cytochrome b sequences. Whilst morphometrics was generally unable to accurately identify all putative hybrids, this approach revealed diagnostic cranial shape differences between recognized species as well as the cryptic G. ,letabae' (included in the super-species G. maculata). Morphometrics also confirmed the diagnostic value and age dependency of discrete characters. Our integrative approach appeared necessary to the detection of cryptic hybridizations and to the comprehensive characterization of hybrid zones. The recurrent detection of hybrids exhibiting tigrina -like coat patterns may suggest (1) asymmetric hybridization of G. tigrina males to females of other species and (2) positive selection for tigrina -like phenotype in South African habitats, but these hypotheses will have to be further tested using other sources of evidence. Despite the precise mosaic of hybrid zones identified in southern African genets, the environmental factors that shape patterns of distribution of hybrids remain unclear. Nevertheless, in the light of our range reassessment, it appears that seasonality of precipitation and periods of annual frost may play stringent roles in the distribution of genets. The complementarity of our results based on morphology and molecules is regarded as encouraging for the further development of integrative approaches in order to better understand the complex phenomena that underlie hybridization processes. © 2005 The Linnean Society of London, Biological Journal of the Linnean Society, 2005, 86, 11,33. [source]


Genetic and morphological evidence for reproductive isolation between sympatric populations of Galaxias (Teleostei: Galaxiidae) in South Island, New Zealand

BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 3 2001
JONATHAN M. WATERS
New Zealand's South Island houses a flock of closely related stream-resident fish taxa (Galaxias vulgaris sensu lato), including a number of species recently described on the basis of subtle morphological differences. The taxonomic status of some members of the species complex remains uncertain. This study examines the degree of reproductive isolation between recently recognized morphotypes from Southland (G. ,southern', flatheads; G. gollumoides, roundheads) which co-occur in Bushy Creek, a tributary of the Mataura R. Although these morphotypes are broadly sympatric in Southland and Stewart Island, Bushy Creek is their only documented zone of contact. Molecular (microsatellite, isozyme and mtDNA markers) and morphological analyses of 139 fish samples across a 500-m transect (seven stations) reveal a cline from predominantly G. ,southern' (N=85) to predominantly G. gollumoides (JV=54), corresponding with a gradual increase in stream gradient. Multivariate analyses of genotypic and morphological data independently reveal distinct clusters that are completely congruent with mtDNA type, suggesting an absence of mtDNA introgression. Our data support the separate species status of G. ,southern' and G. gollumoides under both biological and phylogenetic species concepts. We suggest that the speciation of these taxa occurred in allopatry through independent losses of diadromy, with sympatry resulting from secondary contact. [source]


Conservation Status as a Biodiversity Trend Indicator: Recommendations from a Decade of Listing Species at Risk in British Columbia

CONSERVATION BIOLOGY, Issue 4 2005
JAMES F. QUAYLE
especies amenazadas; especies en peligro; estado del ambiente Abstract:,Species conservation status is commonly used as a broad-scale indicator of the state of biological diversity. To learn about its value for tracking trends, we examined provincial lists of terrestrial vertebrate species and subspecies at risk in British Columbia, Canada, for 1992 and 2002 to see whether changes in these lists reflected changes in the status of the taxa they represent. Examination of the case histories of individual species and subspecies showed that 65% of additions and deletions to the British Columbia Red List were the result of improvement in knowledge of species status, changes in assessment procedures, and refinements in taxonomy rather than actual changes in a species' status. Comparison to an alternate set of rank scores provided by NatureServe for taxa that appeared on both 1992 and 2002 British Columbia Red Lists revealed changes in status that were not reflected by movement from the list. Estimates of historical conservation status for species on the 1992 British Columbia Red List demonstrated ambiguity around the natural baseline with regard to tracking changes in list composition over time. We discourage the continued use of indicators based solely on conservation status as a means of tracking biodiversity. Instead we recommend advancing strategic indicators around species at risk based on long-term monitoring data, deliberate and explicitly stated baselines, and consistent methods of conservation ranking. Resumen:,El estatus de conservación de las especies comúnmente es utilizado como un indicador de escala amplia del estado de la diversidad biológica. En un esfuerzo por aprender sobre su valor para el seguimiento de tendencias, examinamos listas provinciales, para 1992 y 2002, de especies y subespecies de vertebrados terrestres en riesgo en Columbia Británica, Canadá, para ver si los cambios en estas listas reflejaban cambios en el estatus de los taxa que representan. El examen de la historia del caso de especies y subespecies individuales mostró que 65% de las adiciones y supresiones en la Lista Roja de Columbia Británica fueron el resultado de avances en el conocimiento del estatus de la especie, de cambios en los procedimientos de evaluación y de refinamientos en la taxonomía y no de cambios en el estatus de una especie. La comparación con un conjunto alternativo de valores de clasificación proporcionado por NatureServe para taxa que aparecieron tanto en la Lista Roja de Columbia Británica de 1992 como de 2002 reveló cambios en el estatus que no se reflejaron en movimientos en la lista. Estimaciones del estatus de conservación histórico de especies en la Lista Roja de Columbia Británica de 1992 demostraron ambigüedad alrededor de la línea de base natural en relación con el seguimiento de cambios en el tiempo en la composición de la lista. Desalentamos el uso continuo de indicadores basados solamente en el estatus de conservación como un medio para el seguimiento de biodiversidad. En cambio, recomendamos avanzar con indicadores estratégicos en torno a especies en riesgo con base en datos de monitoreo de largo plazo, en líneas básicas puestas de manifiesto deliberada y explícitamente y en métodos consistentes para la clasificación de la conservación. [source]


Genetic divergence between morphological forms of brown trout Salmo trutta L. in the Balkan region of Macedonia

JOURNAL OF FISH BIOLOGY, Issue 5 2010
S. Lo Brutto
The objective of this study was to characterize the genetic structure of two Balkan brown trout morphotypes, Salmo macedonicus and Salmo pelagonicus, and to test whether molecular traits support the species' status proposed by traditional morphological identification. The mitochondrial DNA 12S-rDNA, cyt b and control region genes were sequenced in 15 specimens collected from three localities in the Former Yugoslav Republic of Macedonia. The results of these markers did not support the taxonomic category of species but confirmed the existence of two morphotypes, Salmo trutta macedonicus and Salmo trutta pelagonicus, in the Aegean,Adriatic lineages of the Salmo trutta species complex. [source]


A review of the historical evidence of the habitat of the Pine Marten in Cumbria

MAMMAL REVIEW, Issue 1 2001
J. A. Webster
ABSTRACT Place names and evidence from the literature show the Pine Marten (Martes martes) to have been well distributed in Cumbria until late in the nineteenth century, with a core area in the central fells. The habitat available to these martens is assessed and the species' status and the reasons for its decline reviewed. Despite the modern emphasis on the absolute importance of woodland to the Pine Marten, it is argued that historical Cumbrian populations survived successfully for many generations in highly fragmented habitats. [source]