Home About us Contact | |||
Species Richness Gradients (species + richness_gradient)
Selected AbstractsElevational gradients, area and tropical island diversity: an example from the palms of New GuineaECOGRAPHY, Issue 3 2004Steven Bachman The factors causing spatial variation in species richness remain poorly known. In this study, factors affecting species richness of palms (Palmae/Arecaceae) were studied along the elevational gradient of New Guinea. Interpolated elevational ranges were calculated from a database of all known collections for 145 species in 32 genera. The amount of land area at different elevations greatly affects the species richness gradient. If assessed in equal-elevation bands species richness appears to decline monotonically, but when assessed in equal-area bands species richness shows a pronounced mid-elevation peak, due to the large proportion of lowlands in New Guinea. By randomising species ranges within the total elevational gradient for palms and accounting for area, we found the mid-elevation peak to be consistent with a mid-domain effect caused by the upper and lower limits to palm distribution. Our study illustrates the importance of accounting for area in macroecological studies of richness gradients and introduces a novel yet simple method for doing this through the use of equal-area bands. Together, the effect of area and the mid-domain effect explain the majority of variation in species richness of New Guinea palms. We support calls for the multivariate assessment of the mid-domain effect on an equal footing with other potential explanations of species richness. [source] Environmental determinants of amphibian and reptile species richness in ChinaECOGRAPHY, Issue 4 2007Hong Qian Understanding the factors that regulate geographical variation in species richness has been one of the fundamental questions in ecology for decades, but our knowledge of the cause of geographical variation in species richness remains poor. This is particularly true for herpetofaunas (including amphibians and reptiles). Here, using correlation and regression analyses, we examine the relationship of herpetofaunal species richness in 245 localities across China with 30 environmental factors, which include nearly all major environmental factors that are considered to explain broad-scale species richness gradients in such theories as ambient energy, water,energy dynamics, productivity, habitat heterogeneity, and climatic stability. We found that the species richness of amphibians and reptiles is moderately to strongly correlated with most of the environmental variables examined, and that the best fit models, which include explanatory variables of temperature, precipitation, net primary productivity, minimum elevation, and range in elevation, explain ca 70% the variance in species richness for both amphibians and reptiles after accounting for sample area. Although water and temperature are important explanatory variables to both amphibians and reptiles, water variables explain more variance in amphibian species richness than in reptile species richness whereas temperature variables explain more variance in reptile species richness than in amphibian species richness, which is consistent with different physiological requirements of the two groups of organisms. [source] Relationships between spatial environmental heterogeneity and plant species diversity on a limestone pavementECOGRAPHY, Issue 6 2003Jeremy T. Lundholm No empirical studies have examined the relationship between diversity and spatial heterogeneity across unimodal species richness gradients. We determined the relationships between diversity and environmental factors for 144 0.18 m2 plots in a limestone pavement alvar in southern Ontario, Canada, including within-plot spatial heterogeneity in soil depth, microtopography and microsite composition. Species richness was unimodally related to mean soil depth and relative elevation. Microsite heterogeneity and soil depth heterogeneity were positively correlated with species richness, and the richness peaks of the unimodal gradients correspond to the maximally spatially heterogeneous plots. The best predictive models of species richness and evenness, however, showed that other factors, such as ramet density and flooding, are the major determinants of diversity in this system. The findings that soil depth heterogeneity had effects on diversity when the effects of mean soil depth were factored out, and that unimodal richness peaks were associated with high spatial heterogeneity in environmental factors represent significant contributions to our understanding of how spatial heterogeneity might contribute to diversity maintenance in plant communities. [source] The relationships between local and regional species richness and spatial turnoverGLOBAL ECOLOGY, Issue 5 2002Patricia Koleff Abstract Aim To determine the empirical relationships between species richness and spatial turnover in species composition across spatial scales. These have remained little explored despite the fact that such relationships are fundamental to understanding spatial diversity patterns. Location South-east Scotland. Methods Defining local species richness simply as the total number of species at a finer resolution than regional species richness and spatial turnover as turnover in species identity between any two or more areas, we determined the empirical relationships between all three, and the influence of spatial scale upon them, using data on breeding bird distributions. We estimated spatial turnover using a measure independent of species richness gradients, a fundamental feature which has been neglected in theoretical studies. Results Local species richness and spatial turnover exhibited a negative relationship, which became stronger as larger neighbourhood sizes were considered in estimating the latter. Spatial turnover and regional species richness did not show any significant relationship, suggesting that spatial species replacement occurs independently of the size of the regional species pool. Local and regional species richness only showed the expected positive relationship when the size of the local scale was relatively large in relation to the regional scale. Conclusions Explanations for the relationships between spatial turnover and local and regional species richness can be found in the spatial patterns of species commonality, gain and loss between areas. [source] |