Species Performance (species + performance)

Distribution by Scientific Domains


Selected Abstracts


Influence of plant species and soil conditions on plant,soil feedback in mixed grassland communities

JOURNAL OF ECOLOGY, Issue 2 2010
Kathryn A. Harrison
Summary 1.,Our aim was to explore plant,soil feedback in mixed grassland communities and its significance for plant productivity and community composition relative to abiotic factors of soil type and fertility. 2.,We carried out a 4-year, field-based mesocosm experiment to determine the relative effects of soil type, historic management intensity and soil conditioning by a wide range of plant species of mesotrophic grassland on the productivity and evenness of subsequent mixed communities. 3.,The study consisted of an initial soil conditioning phase, whereby soil from two locations each with two levels of management intensity was conditioned with monocultures of nine grassland species, and a subsequent feedback phase, where mixed communities of the nine species were grown in conditioned soil to determine relative effects of experimental factors on the productivity and evenness of mixed communities and individual plant species performance. 4.,In the conditioning phase of the experiment, individual plant species differentially influenced soil microbial communities and nutrient availability. However, these biotic effects were much less important as drivers of soil microbial properties and nutrient availability than were abiotic factors of soil type and fertility. 5.,Significant feedback effects of conditioning were detected during the second phase of the study in terms of individual plant growth in mixed communities. These feedback effects were generally independent of soil type or fertility, and were consistently negative in nature. In most cases, individual plant species performed less well in mixed communities planted in soil that had previously supported their own species. 6.,Synthesis. These findings suggest that despite soil abiotic factors acting as major drivers of soil microbial communities and nutrient availability, biotic interactions in the form of negative feedback play a significant role in regulating individual plant performance in mixed grassland communities across a range of soil conditions. [source]


Effects of density and ontogeny on size and growth ranks of three competing tree species

JOURNAL OF ECOLOGY, Issue 2 2009
Suzanne B. Boyden
Summary 1Rank reversals in species performance are theoretically important for structuring communities, maintaining diversity and determining the course of forest succession. Species growth ranks can change with ontogeny or in different microenvironments, but interactions between ontogeny and the environment are not well-understood because of the lack of long-term forest competition studies. While early differences in growth among species may reflect intrinsic differences in shade-tolerance and physiology, ontogenetic trends in growth and variation in neighbourhood density and composition may change or even reverse early patterns of growth rankings. 2We experimentally studied spatial and temporal patterns of species interactions and growth for three northern tree species: Larix laricina, Picea mariana and Pinus strobus. We compared species size and growth rankings over an 11-year period, for different species mixtures planted at four density levels in north-eastern Minnesota, USA. 3The benefits of different growth strategies changed with ontogeny and density leading to reversals in the size rank of competing species over time and space. High-density stands promoted dominance and resource pre-emption by L. laricina, whereas lower-density stands favoured gradual accumulation of biomass and eventual dominance by P. strobus. In the absence of strong neighbour competition, ontogenetic trends in growth had greater influence on growth patterns. 4Species interactions affected the productivity of mixed stands vs. monocultures. Species generally grew more in monoculture than when planted with P. strobus at low density, or with L. laricina at high density. Only L. laricina and P. mariana showed potential for greater overall productivity, or over-yielding, when planted together than alone, probably because of improved resource uptake by the highly stratified canopy. 5Synthesis. Density predictably determined whether size-asymmetric growth or ontogenetic growth trends would drive early establishment and growth patterns. Variation in vertical and horizontal structure that results from early competitive dynamics can influence the successional trajectory or character of the mature forest. This study extends previous efforts to identify the causes of rank reversals in communities and understand the importance of temporal changes beyond the early years of seedling establishment. [source]


Monkeys and apes: Are their cognitive skills really so different?

AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY, Issue 2 2010
Federica Amici
Abstract Differences in cognitive skills across taxa, and between monkeys and apes in particular, have been explained by different hypotheses, although these often are not supported by systematic interspecific comparisons. Here, we directly compared the cognitive performance of the four great apes and three monkey species (spider monkeys, capuchin monkeys, and long-tailed macaques), differing in their phylogenetic-relatedness and socioecology. We tested subjects on their ability to remember object locations (memory task), track object displacements (transposition task), and obtain out-of-reach rewards (support task). Our results showed no support for an overall clear-cut distinction in cognitive skills between monkeys and apes as species performance varied substantially across tasks. Although we found differences in performance at tracking object displacements between monkeys and apes, interspecific differences in the other two tasks were better explained in terms of differential socioecology, especially differential levels of fission,fusion dynamics. A cluster analysis using mean scores of each condition of the three tasks for each species suggested that the only dichotomy might be between members of the genus Pan and the rest of the tested species. These findings evidence the importance of using multiple tasks across multiple species in a comparative perspective to test different explanations for the enhancement of specific cognitive skills. Am J Phys Anthropol 143:188,197, 2010. © 2010 Wiley-Liss, Inc. [source]


Traits, neighbors, and species performance in prairie restoration

APPLIED VEGETATION SCIENCE, Issue 3 2010
R.E. Roberts
Abstract Questions: Are traits related to the performance of plant species in restoration? Are the relationships between traits and performance consistent across the functional groups of annual forbs, perennial forbs and grasses? Do the relationships between traits and performance depend on neighboring functional groups? Location: A former agricultural field, being restored to native upland prairie, in the Willamette Valley of western Oregon, USA. Methods: Twenty-eight native species, representing three functional groups, were sown in seven different combinations. Eleven functional traits were measured from plants in the laboratory and in the field. Correlations between individual traits and performance variables were measured and regression techniques used to determine which sets of traits were most strongly related to performance. Results: Sets of traits explained up to 56% of variation in cover, and up to 48% of variation in establishment frequency. The relationships between traits and performance were influenced by functional group identity; the functional group identity of neighboring species also influenced species' cover and the relationships between traits and cover. Species' establishment rate in monoculture was the trait most strongly correlated to both establishment and cover in mixtures. In multi-trait models, annual forb functional group identity was strongly related to establishment in mixtures, and height, leaf weight ratio at 7 d and seed mass were strongly related to cover. Conclusions: Multiple-trait models should be a useful way of predicting the performance of species prior to sowing in restoration. The functional group identity of each species and the other species being sown may need to be taken into account when making predictions. [source]


Ever since Clements: from succession to vegetation dynamics and understanding to intervention

APPLIED VEGETATION SCIENCE, Issue 1 2009
S.T.A. Pickett
Abstract Introduction: This paper surveys a framework for vegetation dynamics to provide conceptual background for a series of papers addressing the role of vegetation dynamics in restoration. Richness of the foundation: Classical succession theory provides key ingredients for contemporary process studies of vegetation dynamics. The contemporary framework incorporates processes identified by Gleason and other critics of Clements' theory. Multiple causality: The Clementsian causes, when expanded to include interaction and to clarify net effects, accommodate those now recognized in vegetation dynamics. A mature successional framework: A hierarchical framework has emerged to evaluate the causes of vegetation dynamics. The framework identifies the general causes as site availability, species availability, and species performance. Differentials as drivers: Differentials in any of the three general causes can drive change in plant communities. Each general cause consists of specific mechanisms. A model template: To predict vegetation dynamics trajectories, models are required. A model template is presented to operationalize the hierarchical framework. Outcomes are contingent on species pools and environmental contexts and may be progressive or retrogressive. Relationships of frameworks: Other contemporary frameworks in biology relate to vegetation dynamics. Application to restoration: The vegetation dynamics framework is relevant to restoration through linkages with landscape ecology, disturbance ecology, competition, invasion ecology, and community assembly. The differentials of site availability, species availability, and species performance suggest the processes and strategies available for restoration. Conclusions: A synthetic framework of vegetation brings together the mechanisms required for successful restoration. [source]


Seeking a sound index of competitive intensity: Application to the study of biomass production under elevated CO2 along a nitrogen gradient

AUSTRAL ECOLOGY, Issue 4 2002
MARIE-LAURE MAYAS
Abstract The aim of this paper is to evaluate (i) the relevance of currently proposed measures of competitive intensity to elevated CO2 studies by means of an example analysis, hypothesizing that competitive intensity is increased under elevated CO2; and (ii) an alternative method for predicting species performance in mixtures from monocultures. Relative competition intensity (RCI), relative physiological performance and normalized ecological performance were used to characterize the competitive ability of two grasses (Danthonia riclwrdsonii Cashmore, Phalaris aquatica L.) and two legumes (Lotus pedunculatus Cav, Trifoliuni repens L.) grown in monocultures and mixtures of the four species along a N gradient under conditions of ambient and elevated CO2. Relative competition intensity could not be used to predict competitive outcomes in mixtures under conditions of elevated CO2 because it failed to account for changes in the size of interspecific differences along the N gradient and between CO2 concentrations. Relative physiological performance and relative ecological performance were more useful for investigating biomass production in mixtures and to predict species performance in mixtures from their performance in monocultures. Both indices of relative performance showed an increase in competitive intensity under elevated CO2 conditions. They also showed a decrease in competitive intensity with increasing N supply over most of the range of N supply, but a reversal of that trend at high levels of N supply. The merits and utility of these relative performance indices for elevated CO2 are discussed. [source]


Performance Trade-offs Driven by Morphological Plasticity Contribute to Habitat Specialization of Bornean Tree Species

BIOTROPICA, Issue 4 2009
Daisy H. Dent
ABSTRACT Growth-survival trade-offs play an important role in niche differentiation of tropical tree species in relation to light-gradient partitioning. However, the mechanisms that determine differential species performance in response to light and soil resource availability are poorly understood. To examine responses to light and soil nutrient availability, we grew seedlings of five tropical tree species for 12 mo at < 2 and 18 percent full sunlight and in two soil types representing natural contrasts in nutrient availability within a lowland dipterocarp forest in North Borneo. We chose two specialists of nutrient-rich and nutrient-poor soils, respectively, and one habitat generalist. Across all species, growth was higher in high than low light and on more nutrient rich soil. Although species differed in growth rates, the ranking of species, in terms of growth, was consistent across the four treatments. Nutrient-rich soils improved seedling survival and increased growth of three species even under low light. Slower-growing species increased root allocation and reduced specific leaf area (SLA) and leaf area ratio (LAR) in response to decreased nutrient supply. All species increased LAR in response to low light. Maximum growth rates were negatively correlated with survival in the most resource-limited environment. Nutrient-poor soil specialists had low maximum growth rates but high survival at low resource availability. Specialists of nutrient-rich soils, plus the habitat generalist, had the opposite suite of traits. Fitness component trade-offs may be driven by both light and belowground resource availability. These trade-offs contribute to differentiation of tropical tree species among habitats defined by edaphic variation. [source]