Species Longevity (species + longevity)

Distribution by Scientific Domains


Selected Abstracts


Does versatility as measured by geographic range, bathymetric range and morphological variability contribute to taxon longevity?

GLOBAL ECOLOGY, Issue 1 2007
Lee Hsiang Liow
ABSTRACT Aim, This paper aims to examine the relationship between versatility as measured by geographic range, bathymetric range and morphological variability (species and subspecies richness and the occurrence of morphologically highly variable populations), and the geologic longevities of trachyleberidid ostracode species and genera, while accounting for sampling biases and other confounding factors. Location, Global. Methods, A large database of occurrence records of species of the family Trachyleberididae s.l. was analysed. The relationships between genus and species longevity and the above mentioned variables were examined singly and in concert. Re-analyses of subsets of data and rarefaction techniques were employed to account for sampling biases, while randomization was used to account for autocorrelation of variables. Results, The mean number of occurrence records, and latitudinal and longitudinal ranges, were strongly and positively correlated with genus and species longevities. The number of bathymetric zones occupied by genera had no consistent bearing on their longevities, but species data subsets tended to indicate significant positive relationships between bathymetric range and longevities. Species richness was significantly and positively correlated with genus longevities. Species and genera with subspecies and species with high morphological variability all had significantly greater longevities. Genus-level characteristics can be explained largely by species-level characteristics, including longevity, latitudinal ranges and bathymetric ranges to a lesser degree. However, genus longevity was best explained by species richness and genus age, even for extinct genera, while species longevity was best explained by species latitudinal range. Main conclusions, In spite of the incompleteness of the fossil record, we can control for biasing factors and still confidently draw the conclusion that both ecological and evolutionary versatility contribute to lineage longevity, beyond the shorter temporal observation windows available to most ecological studies. [source]


Skin-derived fibroblasts from long-lived species are resistant to some, but not all, lethal stresses and to the mitochondrial inhibitor rotenone

AGING CELL, Issue 1 2007
James M. Harper
Summary Fibroblast cell lines were developed from skin biopsies of eight species of wild-trapped rodents, one species of bat, and a group of genetically heterogeneous laboratory mice. Each cell line was tested in vitro for their resistance to six varieties of lethal stress, as well as for resistance to the nonlethal metabolic effects of the mitochondrial inhibitor rotenone and of culture at very low glucose levels. Standard linear regression of species-specific lifespan against each species mean stress resistance showed that longevity was associated with resistance to death induced by cadmium and hydrogen peroxide, as well as with resistance to rotenone inhibition. A multilevel regression method supported these associations, and suggested a similar association for resistance to heat stress. Regressions for resistance to cadmium, peroxide, heat, and rotenone remained significant after various statistical adjustments for body weight. In contrast, cells from longer-lived species did not show significantly greater resistance to ultraviolet light, paraquat, or the DNA alkylating agent methylmethanesulfonate. There was a strong correlation between species longevity and resistance to the metabolic effects of low-glucose medium among the rodent cell lines, but this test did not distinguish mice and rats from the much longer-lived little brown bat. These results are consistent with the idea that evolution of long-lived species may require development of cellular resistance to several forms of lethal injury, and provide justification for evaluation of similar properties in a much wider range of mammals and bird species. [source]


Change over 70 years in a southern California chaparral community related to fire history

JOURNAL OF VEGETATION SCIENCE, Issue 5 2004
Janet Franklin
Abstract: Question: What changes in species composition and cover have occurred in chaparral as a function of fire history across an ecoregion? Location: San Diego County, California, USA. Methods: Stands in which 40 mid-elevation chaparral vegetation plots (each 400 m2 in area) were located in the 1930s were resurveyed in 2001. We stratified the stands into Infrequently versus Frequently burned (0,1 versus 2 or more fires recorded in the 91-yr period), and Immature versus Mature (31 yr versus >31 yr since last fire), resulting in four groups. Ten stands were randomly selected from each of these groups for survey. Results: There were no major shifts in life form composition, e.g., live oak trees were not invading chaparral that had experienced little or no fire, nor were subshrubs or herbaceous species replacing shrubs in areas that had experienced more frequent fires. However, there was a notable increase in the frequency of the subshrub Eriogonum fasciculatum across all fire history groups. In the mature stands with infrequent fire, average cover of resprouting shrubs increased (from 72 to 91%) and cover of obligate seeding shrubs (species with fire-cued germination) decreased (from 21 to 6%) significantly. Mature stands with frequent fire showed a significant decrease in resprouter cover (from 87 to 80%) and increase in obligate seeders (from 10 to 16%). Conclusions: While the tremendous changes in land use in southern California have been predicted to cause shifts in chaparral composition, these shifts are difficult to detect because species longevity and fire cycles are on the order of decades to a century. In this study, the expected trends could only be detected in groups that were mature at the time of the second survey. [source]