Species Discovery (species + discovery)

Distribution by Scientific Domains


Selected Abstracts


Species Discovery versus Species Identification in DNA Barcoding Efforts: Response to Rubinoff

CONSERVATION BIOLOGY, Issue 5 2006
ROB DeSALLE
No abstract is available for this article. [source]


Species discovery in marine planktonic invertebrates through global molecular screening

MOLECULAR ECOLOGY, Issue 5 2010
ERICA GOETZE
Abstract Species discovery through large-scale sampling of mitochondrial diversity, as advocated under DNA barcoding, has been widely criticized. Two of the primary weaknesses of this approach, the use of a single gene marker for species delineation and the possible co-amplification of nuclear pseudogenes, can be circumvented through incorporation of multiple data sources. Here I show that for taxonomic groups with poorly characterized systematics, large-scale genetic screening using a mitochondrial DNA marker can be a very effective approach to species discovery. Global sampling (120 locations) of 1295 individuals of 22 described species of eucalanid copepods identified 15 novel evolutionarily significant units (ESUs) within this marine holoplanktonic family. Species limits were tested under reciprocal monophyly at the mitochondrial (mt) gene 16S rRNA, and 13 of 15 lineages were reciprocally monophyletic under three phylogenetic inference methods. Five of these mitochondrial ESUs also received moderate support for reciprocal monophyly at the independently-inherited nuclear gene, internal transcribed spacer 2 (ITS2). Additional support for the utility of mt DNA as a proxy for species boundaries in this taxon is discussed, including results from related morphological and biogeographic studies. Minimal overlap of intra-ESU and inter-ESU 16S rRNA genetic distances was observed, suggesting that this mt marker performs well for species discovery via molecular screening. Sampling coverage required for the discovery of new ESUs was found to be in the range of >50 individuals/species, well above the sampling intensity of most current DNA Barcoding studies. Large-scale genetic screening can provide critical first data on the presence of cryptic species, and should be used as an approach to generate systematic hypotheses in groups with incomplete taxonomies. [source]


DNA barcoding: a new module in New Zealand's plant biosecurity diagnostic toolbox

EPPO BULLETIN, Issue 1 2010
K. Armstrong
Molecular methods for identification of high risk pests and pathogens have been employed for more than a decade to supplement standard diagnostic protocols. However, as the volume of traded goods continues to increase so does the breadth of taxa that diagnosticians need to deal with. Keeping pace by introducing more molecular tests that are typically species-group specific is not an efficient way to progress. Since 2005 classical DNA barcoding using cytochrome oxidase I sequence has been employed routinely in New Zealand for the highest risk insect species (fruit flies and lymantriid moths). Subsequently a broader range of pests have been considered. Case studies are presented here for three important lepidopteran pests, Lymantria mathura (pink gypsy moth), Conogethes punctiferalis (yellow peach moth) and Hyphantria cunea (fall web worm), as well as a trial to identify miscellaneous border interceptions. While the data support the effectiveness of DNA barcoding for border diagnostics, they also raise issues around cryptic species identification and potential species discovery that could impact on operational biosecurity systems. [source]


Species discovery in marine planktonic invertebrates through global molecular screening

MOLECULAR ECOLOGY, Issue 5 2010
ERICA GOETZE
Abstract Species discovery through large-scale sampling of mitochondrial diversity, as advocated under DNA barcoding, has been widely criticized. Two of the primary weaknesses of this approach, the use of a single gene marker for species delineation and the possible co-amplification of nuclear pseudogenes, can be circumvented through incorporation of multiple data sources. Here I show that for taxonomic groups with poorly characterized systematics, large-scale genetic screening using a mitochondrial DNA marker can be a very effective approach to species discovery. Global sampling (120 locations) of 1295 individuals of 22 described species of eucalanid copepods identified 15 novel evolutionarily significant units (ESUs) within this marine holoplanktonic family. Species limits were tested under reciprocal monophyly at the mitochondrial (mt) gene 16S rRNA, and 13 of 15 lineages were reciprocally monophyletic under three phylogenetic inference methods. Five of these mitochondrial ESUs also received moderate support for reciprocal monophyly at the independently-inherited nuclear gene, internal transcribed spacer 2 (ITS2). Additional support for the utility of mt DNA as a proxy for species boundaries in this taxon is discussed, including results from related morphological and biogeographic studies. Minimal overlap of intra-ESU and inter-ESU 16S rRNA genetic distances was observed, suggesting that this mt marker performs well for species discovery via molecular screening. Sampling coverage required for the discovery of new ESUs was found to be in the range of >50 individuals/species, well above the sampling intensity of most current DNA Barcoding studies. Large-scale genetic screening can provide critical first data on the presence of cryptic species, and should be used as an approach to generate systematic hypotheses in groups with incomplete taxonomies. [source]


DNA barcoding of stylommatophoran land snails: a test of existing sequences

MOLECULAR ECOLOGY RESOURCES, Issue 4 2009
ANGUS DAVISON
Abstract DNA barcoding has attracted attention because it is a potentially simple and universal method for taxonomic assignment. One anticipated problem in applying the method to stylommatophoran land snails is that they frequently exhibit extreme divergence of mitochondrial DNA sequences, sometimes reaching 30% within species. We therefore trialled the utility of barcodes in identifying land snails, by analysing the stylommatophoran cytochrome oxidase subunit I sequences from GenBank. Two alignments of 381 and 228 base pairs were used to determine potential error rates among a test data set of 97 or 127 species, respectively. Identification success rates using neighbour-joining phylogenies were 92% for the longer sequence and 82% for the shorter sequence, indicating that a high degree of mitochondrial variation may actually be an advantage when using phylogeny-based methods for barcoding. There was, however, a large overlap between intra- and interspecific variation, with assignment failure (per cent of samples not placed with correct species) particularly associated with a low degree of mitochondrial variation (Kimura 2-parameter distance < 0.05) and a small GenBank sample size (< 25 per species). Thus, while the optimum intra/interspecific threshold value was 4%, this was associated with an overall error of 32% for the longer sequences and 44% for the shorter sequences. The high error rate necessitates that barcoding of land snails is a potentially useful method to discriminate species of land snail, but only when a baseline has first been established using conventional taxonomy and sample DNA sequences. There is no evidence for a barcoding gap, ruling out species discovery based on a threshold value alone. [source]


Three sisters in the same dress: cryptic speciation in African odonates

MOLECULAR ECOLOGY, Issue 18 2010
A. CORDERO-RIVERA
The discovery of cryptic species (i.e. two or more distinct but morphologically undistinguishable species) has grown exponentially in the last two decades, due mainly to the increasing availability of DNA sequences. This suggests that hidden in the known species, many of which have been described based solely on morphological information, there might be a high number of species waiting to be discovered. In this issue Damm et al. (2010) use a combination of genetic, morphological and ecological evidence to identify the first cryptic species complex found within dragonflies (insect order Odonata). Their findings add more evidence for the importance of combining information from different disciplines to new species' discovery (DeSalle et al. 2005). [source]