Spermatogonia

Distribution by Scientific Domains
Distribution within Life Sciences


Selected Abstracts


Spermatogenesis in Boccardiella hamata (Polychaeta: Spionidae) from the Sea of Japan: sperm formation mechanisms as characteristics for future taxonomic revision

ACTA ZOOLOGICA, Issue 4 2010
Arkadiy A. Reunov
Abstract Reunov, A.A., Yurchenko, O.V., Alexandrova, Y.N. and Radashevsky, V.I. 2009. Spermatogenesis in Boccardiella hamata (Polychaeta: Spionidae) from the Sea of Japan: sperm formation mechanisms as characteristics for future taxonomic revision. ,Acta Zoologica (Stockholm) 91: 477,456. To characterize novel features that will be useful in the discussion and validation of the spionid polychaete Boccardiella hamata from the Sea of Japan, the successive stages of spermatogenesis were described and illustrated. Spermatogonia, spermatocytes and early spermatids are aflagellar cells that develop synchronously in clusters united by a cytophore. At the middle spermatid stage, the clusters undergo disintegration and spermatids produce flagella and float separately in coelomic fluid as they transform into sperm. Spermatozoa are filiform. The ring-shaped storage platelets are located along the anterior nuclear area. The nucleus is cupped by a conical acrosome. A nuclear plate is present between the acrosome and nucleus. The nucleus is a cylinder with the implantation fossa throughout its length and with the anterior part of the flagellum inside the fossa. There is only one centriole, serving as a basal body of the flagellum, situated in close vicinity of the acrosomal area. A collar of four mitochondria is located under the nuclear base. The ultrastructure of B. hamata spermatozoa from the Sea of Japan appears to be close to that of B. hamata from Florida described by Rice (Microscopic Anatomy of Invertebrates, Wiley-Liss, Inc., New York, 1992), suggesting species identity of the samples from the two regions. However, more detailed study of Florida's B. hamata sperm is required for a reliable conclusion concerning the similarity of these two polychaetes. In addition to sperm structure, features such as the cytophore-assigned pattern of spermatogenic cell development, the synchronous pattern of cell divisions, the non-flagellate early spermatogenic stages, and the vesicle amalgamation that drives meiotic cell cytokinesis and spermatid diorthosis will likely be useful in future testing of the validity of B. hamata and sibling species throughout the world. [source]


Spermatogonia and spermatocyte ultrastructure in Hoplias malabaricus (Teleostei, Characiformes: Erythrinidae)

JOURNAL OF ZOOLOGY, Issue 3 2002
José Nazareno Cunha Negrăo
Abstract The Hoplias malabaricus primary spermatogonium shows a large nucleus, central nucleolus, and low electron-dense cytoplasm containing nuages. In cysts, they undergo several mitotic divisions with incomplete cytokinesis, giving rise to secondary spermatogonia. These are smaller than the primary spermatogonia and their nuclei have one or two eccentric nucleoli. Spermatocytes I can be identified by the presence of synaptonemal complexes. Spermatocytes II are smaller than spermatocytes I, displaying roughly compacted chromatin. All these cell types remain interconnected by thick-walled intercellular bridges, which have membranous reinforcements during mitosis and meiosis. These cell types show a well-developed endomembranous system, one of the centrioles anchored to the plasma membrane and small nuages. Their mitochondria are large and circular, with few cristae. In the last generations of spermatogonia, the mitochondria are smaller, elongate and have more cristae. In the spermatocytes, the mitochondria are small and round. Similarities found in relation to germ cells of other teleosts are discussed. [source]


In Vitro Culture and Differentiation of Buffalo (Bubalus bubalis) Spermatogonia

REPRODUCTION IN DOMESTIC ANIMALS, Issue 2 2010
B Xie
Contents The objective of this study was to develop a culture system which could support buffalo spermatogonia differentiation into spermatids in vitro. Testes from 3- to 5-month-old buffaloes were decapsulated and seminiferous tubules were enzymatically dissociated to recover spermatogonia and sertoli cells. The cells were cultured in modified Dulbecco modified Eagle medium supplemented with different concentrations of foetal bovine serum, retinol, testosterone for 2 months at 37°C. Spermatogonia and sertoli cells were identified with an antibody against c-kit or GATA4, respectively. The viability of spermatogonia in the media supplemented with different concentrations of serum was all significantly higher (p < 0.05) compared with that in the medium without serum. A-paired or A-aligned spermatogonia and spermatogonial colonies (AP-positive) were observed after 7,10 days of culture and spermatid-like cells with a flagellum (6,8 ,m) appeared after 30 days of culture. For cultured conditions, retinol could not significantly promote the formation of spermatid-like cells (p > 0.05), whereas supplementation of testosterone could significantly promote (p < 0.05) the formation of spermatid-like cells after 41 days of culture. The expression of the spermatid-specific marker gene (PRM2) was identified after 30 days of culture by RT-PCR. Yet, the transition protein 1 (TP1, a haploid makers) was not detected. Meanwhile, spermatids developed in vitro were also confirmed by Raman spectroscopy. These results suggest that buffalo spermatogonia could differentiate into spermatids in vitro based on the analysis of their morphology, PRM2 expression and Raman spectroscopy. Yet, the normality of the spermatid-like cells was not supported by TP1 expression. [source]


Cleavage-like cell division and explosive increase in cell number of neonatal gonocytes

DEVELOPMENT GROWTH & DIFFERENTIATION, Issue 1 2004
Yasuhiro Sakai
Based on previous conventional quantitative observations of rat testes, it was proposed that large numbers of gonocytes degenerate after birth and this notion was widely accepted. However, many studies show that neonatal gonocytes display high levels of mitotic activity. In order to resolve the apparent contradiction of increased mitotic activity in gonocytes despite a decrease in their numbers at the neonate stage, quantitative analysis using a marker of suitably higher resolution is required. It has been shown that the vasa protein could be used as a marker of germ cells. In this study, quantitative changes in gonocytes were re-examined using a germ-cell-specific marker in order to delineate more clearly the process of development from gonocytes to spermatogonia after birth. The vasa -positive cells, which correspond to gonocytes and spermatogonia, increased exponentially after birth. This observation suggests that all gonocyte divide actively after birth and do not degenerate as previously believed. Surprisingly, the cell volume of gonocytes decreased during their division. The largest population size was 2000,4000 µ3 at day 2, 1000,2000 µ3 at day 4 and 500,1000 µ3 at day 6. This finding suggests that gonocytes divide in a similar way to cleavage, which can be considered a special mode of fertilized eggs. Judging from the growth of seminiferous tubules and the degree of volume reduction, 60% of the contribution rate is estimated to be due to ordinal cell growth, and 40% due to volume reduction as in cleavage of a fertilized egg. This unique cleavage-like division may contribute to the supply of large numbers of spermatogonia. [source]


Sequential activation of Notch family receptors during mouse spermatogenesis

DEVELOPMENT GROWTH & DIFFERENTIATION, Issue 1 2003
Shintaro Mori
The expression pattern of Notch family receptors during mouse spermatogenesis was examined by immunohistochemistry. The entire cytoplasm of spermatogonia, spermatocytes and spermatids showed staining with antibodies against extracellular domains of Notch1, 2 and 4. In contrast, the nuclei of spermatogonia showed staining with an antibody against the intracellular domain of Notch3, and the nuclei of spermatocytes and spermatids showed staining with antibodies against the intracellular domains of Notch1 and 4. During regeneration of spermatogonia in busulfan-treated mice, the nuclei of all proliferating cells showed staining for the intracellular domain of Notch3. Western blot analysis showed that the molecular weights of the intracellular domains of Notch1 and 3 localizing in the nuclear fraction were smaller than those in the cytoplasmic fraction. This was consistent with the theory that the intracellular domain of Notch was cleaved in the cytoplasm and translocated to the nucleus. These results suggest that different Notch signals are sequentially activated during mouse spermatogenesis and control the proliferation and differentiation of spermatogenic stem cells. [source]


Medaka Oct4 is expressed during early embryo development, and in primordial germ cells and adult gonads

DEVELOPMENTAL DYNAMICS, Issue 2 2010
Ana V. Sánchez-Sánchez
Abstract Oct4 is a crucial transcription factor for controlling pluripotency in embryonic stem cells and the epiblast of mouse embryos. We have characterized the expression pattern of medaka (Oryzias latipes) Ol-Oct4 during embryonic development and in the adult gonads. Genomic analysis showed that Ol-Oct4 is the ortholog of zebrafish spg/pou2. However, their expression patterns are not the same, suggesting that Oct4 may play different roles in zebrafish and medaka. Using specific antibodies for the Ol-Oct4 protein, we showed that Ol-Oct4 is also expressed in primordial germ cells, in the spermatogonia (male germ stem cells), and during different stages of oocyte development. These results suggest that Ol-Oct4 plays a post-embryonic role in the maturing gonads and gametes. The Ol-Oct4 mRNA and protein expression patterns are similar to those of mammalian Oct4 and introduce medaka fish as a valid model for the functional and evolutionary study of pluripotency genes in vivo. Developmental Dynamics 239:672,679, 2010. © 2009 Wiley-Liss, Inc. [source]


Retinoids and spermatogenesis: Lessons from mutant mice lacking the plasma retinol binding protein

DEVELOPMENTAL DYNAMICS, Issue 6 2006
Norbert B. Ghyselinck
Abstract Using Rbp4 -null mice as models, we have established for the first time the kinetics of the spermatogenetic alterations during vitamin A deficiency (VAD). Our data demonstrate that the VAD-induced testicular degeneration arises through the normal maturation of germ cells in a context of spermatogonia differentiation arrest. They indicate that retinoic acid (RA) appears dispensable for the transition of premeiotic to meiotic spermatocytes, meiosis, and spermiogenesis. They confirm that RA plays critical roles in controlling spermatogonia differentiation, spermatid adhesion to Sertoli cells, and spermiation, and suggest that the VAD-induced arrest of spermatogonia differentiation results from simultaneous blocks in RA-dependent events mediated by RA receptor , (RAR,) in spermatogonia and by RAR, in Sertoli cells. They also provide evidence that expression of major RA-metabolizing enzymes is increased in mouse Sertoli cells upon VAD and that vitamin A-deficient A spermatogonia differ from their RA-sufficient counterparts by the expression of the Stra8 gene. Developmental Dynamics 235:1608,1622, 2006. © 2006 Wiley-Liss, Inc. [source]


The significance of feeding for reproduction in a male Metastriata tick, Haemaphysalis longicornis (Acari: Ixodidae)

ACTA ZOOLOGICA, Issue 1 2000
Tomohide Matsuo
In Haemaphysalis longicornis, secretions of the male accessory genital glands were regenerated by re-feeding for 3 or 4 days, although the secretions were almost completely released during the first copulation. It was also shown that spermatogenesis continued during re-feeding, since prospermia (elongated spermatids) were deposited in the seminal vesicle. A potent male seeks a receptive female on the host for copulation. The movement of males to different attachment sites occurred between the third and fourth day of re-feeding, and completely re-fed males (for 4 days) were able to copulate successfully. Spermatogenic cells, ranging from spermatogonia at the anterior end to prospermia at the posterior end, were found in fed males. Degeneration of spermatocytes at the great growth phase and developing spermatids prior to final development of prospermia were seen in virgin males without re-feeding after the first meal. Fully elongated spermatids (prospermia) appeared morphologically normal up to 10 days after the first feeding. Degeneration of spermatocytes and developing spermatids occurred from the second day and was almost complete by the fourth day. The degenerating cells shrank, became electron-dense, and finally died. A reduction in secretions of the four lobes of the accessory glands occurred during the 10 days after feeding. [source]


DNA adduct kinetics in reproductive tissues of DNA repair proficient and deficient male mice after oral exposure to benzo(a)pyrene

ENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 2 2010
Nicole Verhofstad
Abstract Benzo(a)pyrene (B[a]P) can induce somatic mutations, whereas its potential to induce germ cell mutations is unclear. There is circumstantial evidence that paternal exposure to B[a]P can result in germ cell mutations. Since DNA adducts are thought to be a prerequisite for B[a]P induced mutations, we studied DNA adduct kinetics by 32P-postlabeling in sperm, testes and lung tissues of male mice after a single exposure to B[a]P (13 mg/kg bw, by gavage). To investigate DNA adduct formation at different stages of spermatogenesis, mice were sacrificed at Day 1, 4, 7, 10, 14, 21, 32, and 42 after exposure. In addition, DNA repair deficient (Xpc,/,) mice were used to study the contribution of nucleotide excision repair in DNA damage removal. DNA adducts were detectable with highest levels in lung followed by sperm and testis. Maximum adduct levels in the lung and testis were observed at Day 1 after exposure, while adduct levels in sperm reached maximum levels at ,1 week after exposure. Lung tissue and testis of Xpc,/, mice contained significantly higher DNA adduct levels compared to wild type (Wt) mice over the entire 42 day observation period (P < 0.05). Differences in adduct half-life between Xpc,/, and Wt mice were only observed in testis. In sperm, DNA adduct levels were significantly higher in Xpc,/, mice than in Wt mice only at Day 42 after exposure (P = 0.01). These results indicate that spermatogonia and testes are susceptible for the induction of DNA damage and rely on nucleotide excision repair for maintaining their genetic integrity. Environ. Mol. Mutagen. 2010. © 2009 Wiley-Liss, Inc. [source]


Transplanted XY germ cells produce spermatozoa in testes of XXY mice,

INTERNATIONAL JOURNAL OF ANDROLOGY, Issue 4 2010
Y. Lue
Summary XXY mouse has been characterized as an experimental model for men with Klinefelter's syndrome (XXY male phenotype). To test whether donor XY germ cells could proliferate and differentiate in the XXY testicular environment, donor testicular cells from adult (2,3 months old) and immature (10 days old) XY green fluorescence protein (GFP) transgenic mice were transplanted into the seminiferous tubules of adult (4,7 months old) and young (6 weeks old) XXY recipient mice respectively. Twelve weeks after transplantation, GFP positive spermatogonia were found in 21.74% (five out of 23) of adult XXY recipients who received adult donor cells. The GFP positive segments of seminiferous tubules were observed in 44.44% (four out of nine) young XXY recipients who received donor cells from 10 days old GFP mice. We found using immunohistochemistry and cell morphology that donor-derived GFP positive germ cells were spermatogonia, spermatocytes, round spermatids and spermatozoa in some of the seminiferous tubules of young XXY recipient mice. The results demonstrated that the donor XY germ cells were able to qualitatively complete spermatogenesis in some of the seminiferous tubules of XXY mice. [source]


Advanced glycation end products accumulate in the reproductive tract of men with diabetes

INTERNATIONAL JOURNAL OF ANDROLOGY, Issue 4 2009
C. Mallidis
Summary Light microscopic studies comparing sperm parameters show little association between diabetes and male fertility. However, with the introduction of new analytical techniques, evidence is now emerging of previously undetectable effects of diabetes on sperm function. Specifically, a recent study has found a significantly higher sperm nuclear DNA fragmentation in diabetic men. As advanced glycation end products (AGEs) are important instigators of oxidative stress and cell dysfunction in numerous diabetic complications, we hypothesized that these compounds could also be present in the male reproductive tract. The presence and localization of the most prominent AGE, carboxymethyl-lysine (CML), in the human testis, epididymis and sperm was determined by immunohistochemistry. Parallel ELISA and Western blot analyses were performed to ascertain the amount of CML in seminal plasma and sperm from 13 diabetic and nine non-diabetic subjects. CML immunoreactivity was found throughout the seminiferous epithelium, the nuclei of spermatogonia and spermatocytes, in the basal and principle cells cytoplasm and nuclei of the caput epididymis and on most sperm tails, mid pieces and all cytoplasmic droplets. The acrosomal cap, especially the equatorial band, was prominently stained in diabetic samples only. The amount of CML was significantly higher (p = 0.004) in sperm from non-diabetic men. Considering the known detrimental actions of AGEs in other organs, the presence, location and quantity of CML, particularly the increased expression found in diabetic men, suggest that these compounds may play a hitherto unrecognized role in male infertility. [source]


Molecular cloning of several rat ABC transporters including a new ABC transporter, Abcb8, and their expression in rat testis

INTERNATIONAL JOURNAL OF ANDROLOGY, Issue 3 2006
Nathalie Melaine
Summary Several members of the ABC transporter superfamily play an important role in testicular physiology and defence against anticancer drugs. Using a reverse transcription-polymerase chain reaction strategy with degenerate primers and rat testis RNA as template, we have looked for the presence of other members of this superfamily. Of the six partial cDNA found, five corresponded to ABC transporters already known ,Mdr1b, Mrp1, Tapl/Abcb9, Umat/Abcb6 and Sur2/Abcc9, and one presented a strong homology with mouse and human ABCB8. Using a 5, and 3, RACE approach, we cloned the full-length cDNA and found that the predicted protein presented 92% and 80% homology with the mouse and human proteins respectively. Strong expression of rat abcb8 was found in heart, brain and testis when compared with liver, lung and spleen. In the testis, rat abcb8 was expressed both in the somatic Sertoli cells and peritubular cells and in the germline (spermatogonia and pachytene spermatocytes). Furthermore, Umat/Abcb6 was very highly expressed in the testis (high amounts in meiotic pachytene spermatocytes and low amount in post-meiotic early spermatids). In conclusion, we confirm the presence of several ABC transporters in the testis and also provide evidence of the presence of Abcb8 in the organ. [source]


Expression of Mina53, a product of a Myc target gene in mouse testis

INTERNATIONAL JOURNAL OF ANDROLOGY, Issue 2 2006
MAKOTO TSUNEOKA
Summary Recently we have identified a novel gene mina53 (mina), which is a direct transcriptional target of oncoprotein Myc. Mina53 protein was shown to be highly expressed in tumour cells and to play a role in cell proliferation. Here we report the expression of Mina53 in mouse testis, which contains proliferating cells and expresses many cancer-related genes. Immunohistochemical studies by using newly produced monoclonal antibody to Mina53 showed that Mina53 was expressed in the nuclei of spermatogonia. Mina53 was also expressed in meiotic prophase cells such as preleptotene, leptotene and zygotene, and weakly in early pachytene spermatocytes, but was absent in late pachytene spermatocytes, spermatids and mature sperm. The expression pattern of Mina53 was quite similar to that of proliferation cell nuclear antigen (PCNA). Using experimental cryptorchid testis, it was found that Mina53 was highly expressed in undifferentiated spermatogonia, which were PCNA-positive. These results suggest that Mina53 is prominently expressed in proliferating, undifferentiated spermatogonia, and plays a role in cell proliferation from the spermatogonial stage to the meiotic prophase in spermatogenesis, but not in meiotic divisions per se. [source]


Suppression of testosterone stimulates recovery of spermatogenesis after cancer treatment

INTERNATIONAL JOURNAL OF ANDROLOGY, Issue 3 2003
Marvin L. Meistrich
Summary It is important to develop methods to prevent or reverse the infertility caused by chemotherapy or radiation therapy for cancer in men. Radiation and some chemotherapeutic agents kill spermatogonial stem cells, but we have shown that these cells survive in rats, although they are unable to differentiate. There is evidence that this phenomenon also occurs in men. The block to spermatogonial differentiation in rats is caused by some unknown change, either in the spermatogonia or the somatic elements of the testis, such that testosterone inhibits spermatogonial differentiation. In the rat, the spermatogenesis and fertility lost following treatment with radiation or some chemotherapeutic agents can be restored by suppressing testosterone with gonadotropin releasing hormone (GnRH) agonists or antagonists, either before or after the cytotoxic insult. The applicability of this procedure to humans is still unknown. Some anticancer regimens may kill all the stem cells, in which case the only option would be spermatogonial transplantation. However, in some cases stem cells survive and there is one report of stimulation of recovery of spermatogenesis with hormonal treatment. Clinical trials should focus on treating patients with hormones during or soon after anticancer treatment. The hormone regimen should involve suppression of testosterone production with minimum androgen supplementation used to improve the diminished libido. [source]


Effect of cancer therapy on pituitary,testicular axis,

INTERNATIONAL JOURNAL OF ANDROLOGY, Issue 5 2002
S. J. Howell
Summary Treatment with cytotoxic chemotherapy and radiotherapy is associated with significant gonadal damage in men. Alkylating agents, such as cyclophosphamide and procarbazine, are the most common agents implicated. The vast majority of men receiving procarbazine-containing regimens for the treatment of lymphomas are rendered permanently infertile. Treatment with adriamycin, bleomycin, vinblastine and dacarbazine (ABVD) appears to have a significant advantage in terms of testicular function, with a return to normal fertility in the vast majority of patients. Cisplatin-based chemotherapy for testicular cancer results in temporary azoospermia in most men with a recovery of spermatogenesis in about 50% after 2 years and 80% after 5 years. There is also evidence of chemotherapy-induced Leydig cell impairment in a proportion of these men, although this appears to be of no clinical significance in the majority of patients. The germinal epithelium is very sensitive to radiation-induced damage with changes to spermatogonia following as little as 0.1 Gy, and permanent infertility after fractionated doses of 2 Gy and above, whereas clinically significant Leydig cell impairment occurs rarely with doses of less than 20 Gy. [source]


Enrichment and transplantation of spermatogonial stem cells

INTERNATIONAL JOURNAL OF ANDROLOGY, Issue S2 2000
Takashi Shinohara
Spermatogenesis is a complex, highly organized process originated from stem cell spermatogonia. Because there are very few stem cells and they can only be defined by their function, the identification and isolation of these cells has been very difficult. By using a spermatogonial transplantation assay system, we have identified ,6 -and ,1 -integrin expression on stem cells, and cells isolated with these antigens were significantly enriched in stem cells. This is the first demonstration of spermatogonial stem cell-associated antigens. Analysis of two infertile mouse models, Steel/SteelDickie (Sl/Sld) and experimental cryptorchidism, showed that the number of stem cells is reduced in Sl/Sld testis. Whereas cryptorchid testes are greatly enriched for stem cells, and one in 200 cells is a stem cell. These techniques will provide an important starting point for further purification and characterization of spermatogonial stem cells. [source]


Embryo development of Corticium candelabrum (Demospongiae: Homosclerophorida)

INVERTEBRATE BIOLOGY, Issue 3 2007
Sonia De Caralt
Abstract. Corticium candelabrum is a homosclerophorid sponge widespread along the rocky Mediterranean sublittoral. Scanning and transmission electron microscopy were used to describe the gametes and larval development. The species is hermaphroditic. Oocytes and spermatocytes are clearly differentiated in April. Embryos develop from June to July when the larvae are released spontaneously. Spermatic cysts originate from choanocyte chambers and spermatogonia from choanocytes by choanocyte mitosis. Oocytes have a nucleolate nucleus and a cytoplasm filled with yolk granules and some lipids. Embryos are surrounded by firmly interlaced follicular cells from the parental tissue. A thin collagen layer lies below the follicular cells. The blastocoel is formed by migration of blastomeres to the morula periphery. Collagen is spread through the whole blastocoel in the embryo, but is organized in a dense layer (basal lamina) separating cells from the blastocoel in the larva. The larva is a typical cinctoblastula. The pseudostratified larval epithelium is formed by ciliated cells. The basal zone of the ciliated cells contains lipid inclusions and some yolk granules; the intermediate zone is occupied by the nucleus; and the apical zone contains abundant electron-lucent vesicles and gives rise to cilia with a single cross-striated rootlet. Numerous paracrystalline structures are contained in vacuoles within both apical and basal zones of the ciliated cells. Several slightly differentiated cell types are present in different parts of the larva. Most cells are ciliated, and show ultrastructural particularities depending on their location in the larvae (antero-lateral, intermediate, and posterior regions). A few smaller cells are non-ciliated. Several features of the C. candelabrum larva seem to support the previously proposed paraphyletic position of homoscleromorphs with respect to the other demosponges. [source]


A histo-morphological study of the testis of the sharptooth catfish (Clarias gariepinus) as reference for future toxicological assessments

JOURNAL OF APPLIED ICHTHYOLOGY, Issue 4 2008
J. C. Van Dyk
Summary The sharptooth catfish (Clarias gariepinus) has recently been shown to be a useful indicator species of oestrogen polluted waters in South Africa (Barnhoorn et al., 2004). Knowledge of the normal reproductive biology of this species is important to be able to assess the morphological changes caused by the exposure to potentially harmful toxicants including endocrine disruptor chemicals (EDCs). Eleven sexually mature C. gariepinus males were selected from an aquarium population bred through hormone induced spawning in reconstituted reverse osmosis water. The fish were reared under controlled conditions averting exposure to potentially EDCs and allowing the description of the normal testis histomorphology of unexposed healthy specimens. The testes of C. gariepinus are paired elongated organs situated in the dorsal region of the visceral cavity. Histologically, the testes possess a lobular organization enclosed by a thin tunica albuginea. Depending on the tissue region, each seminiferous lobule contains some or all of the various developmental stages of spermatogenesis including a single primary spermatogonia, groups of secondary spermatogonia, cysts of primary and secondary spermatocytes, spermatids, and spermatozoa. Nutritive Sertoli cells are visible on the periphery of the seminiferous lobules. Interstitial tissue (including groups of Leydig cells) and blood vessels constitute most of the interlobular space. It is expected that the histological results of this study will contribute to a currently limited, but growing gonadal histological database for southern African freshwater fish species to serve as reference in future toxicity assessments. [source]


Effect of textile waste water on the spermatogenesis of male albino rats

JOURNAL OF APPLIED TOXICOLOGY, Issue 3 2003
R. S. Gupta
Abstract Textile waste water released from dyeing and printing industries situated in Sanganer, Jaipur (India), brought about inhibition of spermatogenesis in male rats. Water analysis showed the presence of heavy metals at more than permissible limits. Oral administration of waste water to the rats at the dose level of 26.6 ml kg,1 body wt. significantly reduced the weights of testes, epididymides and seminal vesicle. Treated animals showed a notable depression of various stages of spermatogenesis. The production of spermatids was inhibited by 70.8% in waste-water-treated rats. The populations of spermatogonia, preleptotene spermatocytes and secondary spermatocytes were decreased by 67.2, 71.1 and 73.2%, respectively. The total number of Sertoli cells was affected after waste water treatment. Reduced sperm count and motility resulted in treated groups. A significant fall in the content of various biochemical parameters of reproductive tissues was observed after water treatment. Copyright © 2003 John Wiley & Sons, Ltd. [source]


Novel identification of peripheral dopaminergic D2 receptor in male germ cells,

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 1 2007
Carola Otth
Abstract Dopamine is a recognized modulator in the central nervous system (CNS) and peripheral organ functions. The presence of peripheral dopamine receptors outside the CNS has suggested an intriguing interaction between the nervous system and other functional systems, such as the reproductive system. In the present study we analyzed the expression of D2R receptors in rat testis, rat spermatogenic cells and spermatozoa, in different mammals. The RT-PCR analysis of rat testis mRNA showed specific bands corresponding to the two dopamine receptor D2R (L and S) isoforms previously described in the brain. Using Western blot analysis, we confirmed that the protein is present in rat testis, isolated spermatogenic cells and also in spermatozoa of a range of different mammals, such as rat, mouse, bull, and human. The immunohistochemistry analysis of rat adult testis showed that the receptor was expressed in all germ cells (pre- and post-meiotic phase) of the tubule with staining predominant in spermatogonia. Confocal analysis by indirect immunofluorescence revealed that in non-capacitated spermatozoa of rat, mouse, bull, and human, D2R is mainly localized in the flagellum, and is also observed in the acrosomal region of the sperm head (except in human spermatozoa). Our findings demonstrate that the two D2 receptor isoforms are expressed in rat testis and that the receptor protein is present in different mammalian spermatozoa. The presence of D2R receptors in male germ cells implies new and unsuspected roles for dopamine signaling in testicular and sperm physiology. J. Cell. Biochem. 100: 141,150, 2007. © 2006 Wiley-Liss, Inc. [source]


Aurora B expression in post-puberal testicular germ cell tumours,

JOURNAL OF CELLULAR PHYSIOLOGY, Issue 2 2009
Francesco Esposito
Aurora/Ipl1-related kinases are a conserved family of proteins that are essential for the regulation of chromosome segregation and cytokinesis during mitosis. Aberrant expression and activity of these kinases occur in a wide range of human tumours and have been implicated in mechanisms leading to mitotic spindle aberrations, aneuploidy, and genomic instability. Previous studies of our group have shown that Aurora B expression is restricted to specific germinal cells. In this study, we have evaluated by immunohistochemical analysis Aurora B expression in post-puberal testicular germ cell tumours (22 seminomas, 2 teratomas, 15 embryonal carcinomas, 5 mixed germinal tumours with a prominent yolk sac tumour component and 1 choriocarcinoma). The Aurora B protein expression was detected in all intratubular germ cell tumours, seminomas and embryonal carcinomas analysed but not in teratomas and yolk sac carcinomas. The immunohistochemical data were further confirmed by Western blot analysis. In addition, the kinase Aurora B was vigorously expressed in GC-1 cells line derived from murine spermatogonia. The block of Aurora B function induced by a pharmacological inhibitor significantly reduced the growth of GC-1 cells suggesting that Aurora B is a potential therapeutic target. J. Cell. Physiol. 221: 435,439, 2009. © 2009 Wiley-Liss, Inc. [source]


Effects of the wood extractive betulinol and 17, -oestradiol on reproduction in zebrafish, Danio rerio (Hamilton) , complications due to a bacterial infection

JOURNAL OF FISH DISEASES, Issue 5 2004
I Christianson-Heiska
Abstract Zebrafish were exposed to the wood extractive betulinol (5 ,g L,1) and to 17, -oestradiol (E2, 0.27 ,g L,1) for 8 weeks in an attempt to study the possible endocrine-disrupting activity of betulinol. Females exposed to betulinol showed increased spawning intensity, while males exposed to betulinol and E2 had increased incidences of structural alterations in the testes. However, histological examination of the fish revealed that they were infected by acid-fast bacteria suspected to be Mycobacterium sp. despite a careful examination of their health state prior to the onset of the experiment. Fish exposed to betulinol and E2 showed more serious consequences of the bacterial infection than control fish indicating that the test chemicals had weakened the immune defence of the fish. When the exposure was repeated with healthy fish, an increase in the proportion of spermatogonia was seen in the testes of betulinol-treated males. A similar alteration, although not statistically significant, was also seen in the first experiment. However, no increase in the incidences of structural alterations in the testes was seen in betulinol- and E2-treated fish in the second experiment. Our study indicates that betulinol might have an endocrine-disrupting effect in zebrafish, but the increase in incidences of structural alterations in the testes might have been caused by a synergistic action between the test compounds and the bacterial infection. Our study stresses the importance of carefully checking the health of experimental fish, not only prior to the onset of an experiment but also upon termination of the experiment, in order to avoid misinterpretation of the results. [source]


Magnetic activated cell sorting allows isolation of spermatogonia from adult primate testes and reveals distinct GFRa1-positive subpopulations in men

JOURNAL OF MEDICAL PRIMATOLOGY, Issue 2 2010
Kathrin Gassei
Abstract Background, Isolation of spermatogonial stem cells (SSCs) could enable in vitro approaches for exploration of spermatogonial physiology and therapeutic approaches for fertility preservation. SSC isolation from adult testes is difficult due to low cell numbers and lacking cell surface markers. Glial cell-derived neurotrophic factor family receptor alpha-1 (GFR,1) plays a crucial role for the maintenance of SSCs in rodents and is expressed in monkey spermatogonia. Methods, Magnetic activated cell sorting was employed for the enrichment of GFR,1+ spermatogonia from adult primate testes. Results, Magnetic activated cell sorting of monkey cells enriched GFR,1+ cells threefold. 11.4% of GFR,1+ cells were recovered. 42.9% of GFR,1+ cells were recovered in sorted fractions of human testicular cells, representing a fivefold enrichment. Interestingly, a high degree of morphological heterogeneity among the GFR,1+ cells from human testes was observed. Conclusions, Magnetic activated cell sorting using anti-GFR,1 antibodies provides an enrichment strategy for spermatogonia from monkey and human testes. [source]


Posthatching development of Alligator mississippiensis ovary and testis

JOURNAL OF MORPHOLOGY, Issue 5 2010
Brandon C. Moore
Abstract We investigated ovary and testis development of Alligator mississippiensis during the first 5 months posthatch. To better describe follicle assembly and seminiferous cord development, we used histochemical techniques to detect carbohydrate-rich extracellular matrix components in 1-week, 1-month, 3-month, and 5-month-old gonads. We found profound morphological changes in both ovary and testis. During this time, oogenesis progressed up to diplotene arrest and meiotic germ cells increasingly interacted with follicular cells. Concomitant with follicles becoming invested with full complements of granulosa cells, a periodic acid Schiff's (PAS)-positive basement membrane formed. As follicles enlarged and thecal layers were observed, basement membranes and thecal compartments gained periodic acid-methionine silver (PAMS)-reactive fibers. The ovarian medulla increased first PAS- and then PAMS reactivity as it fragmented into wide lacunae lined with low cuboidal to squamous epithelia. During this same period, testicular germ cells found along the tubule margins were observed progressing from spermatogonia to round spermatids located within the center of tubules. Accompanying this meiotic development, interstitial Leydig cell clusters become more visible and testicular capsules thickened. During the observed testis development, the thickening tunica albuginea and widening interstitial tissues showed increasing PAS- and PAMS reactivity. We observed putative intersex structures in both ovary and testis. On the coelomic aspect of testes were cell clusters with germ cell morphology and at the posterior end of ovaries, we observed "medullary rests" resembling immature testis cords. We hypothesize laboratory conditions accelerated gonad maturation due to optimum conditions, including nutrients and temperature. Laboratory alligators grew more rapidly and with increased body conditions compared with previous measured, field-caught animals. Additionally, we predict the morphological maturation observed in these gonads is concomitant with increased endocrine activities. J. Morphol. 2010. © 2009 Wiley-Liss, Inc. [source]


Morphological characterization of the testicular cells and seminiferous epithelium cycle in six species of Neotropical bats

JOURNAL OF MORPHOLOGY, Issue 8 2009
Mateus R. Beguelini
Abstract We know little about the process of spermatogenesis in bats, a great and diverse clade of mammals that presents different reproductive strategies. In the present study, spermatogenesis in six species of Neotropical bats was investigated by light microscopy. On the basis of chromatin condensation, nuclear morphology, relative position to the basal membrane and formation of the flagellum, three types of spermatogonia were recognized: dark type A (Ad), pale type A (Ap), and type B; the development of spermatids was divided into seven steps. With the exception of Myotis nigricans, the seminiferous epithelium cycle of the other five species studied was similar to those of other mammals, showing gradual stages by the tubular morphology method. Asynchrony was observed in the seminiferous epithelium cycle of M. nigricans, shown by overlapping stages and undefined cycles. The frequencies found in the three phases of the cycle were variable with the greatest frequency occurring in the postmeiotic phase (>50%) and the least in the meiotic phase (<10%). The similarities observed in the five species of Phyllostomidae appeared to be related to their phylogenetic relationship and shorter divergence times, whereas the differences in M. nigricans appeared to be related to its greater phylogenetic distance because the Vespertilionidae family diverged earlier. J. Morphol., 2009. © 2009 Wiley-Liss, Inc. [source]


Gonadal morphogenesis and sex differentiation in intraovarian embryos of the viviparous fish Zoarces viviparus (Teleostei, Perciformes, Zoarcidae): A histological and ultrastructural study

JOURNAL OF MORPHOLOGY, Issue 9 2006
Tina H. Rasmussen
Abstract It is essential to know the timing and process of normal gonadal differentiation and development in the specific species being investigated in order to evaluate the effect of exposure to endocrine-disrupting chemicals on these processes. In the present study gonadal sex differentiation and development were investigated in embryos of a viviparous species of marine fish, the eelpout, Zoarces viviparus, during their intraovarian development (early September to January) using light and electron microscopy. In both sexes of the embryos at the time of hatching (September 20) the initially undifferentiated paired bilobed gonad contains primordial germ cells. In the female embryos, ovarian differentiation, initiated 14 days posthatch (dph), is characterized by the initial formation of the endoovarian cavity of the single ovary as well as by the presence of some early meiotic oocytes in a chromatin-nucleolus stage. By 30 dph, the endoovarian cavity has formed. By 44 dph and onward, the ovary and the oocytes grow in size and at 134 dph, just prior to birth, the majority of the oocytes are at the perinucleolar stage of primary growth and definitive follicles have formed. In the presumptive bilobed testis of the male embryos, the germ cells (spermatogonia), in contrast to the germ cells of the ovary, remain quiescent and do not enter meiosis during intraovarian development. However, other structural (somatic) changes, such as the initial formation of the sperm duct (30 dph), the presence of blood vessels in the stromal areas of the testis (30 dph), and the appearance of developing testicular lobules (102 dph), indicate testicular differentiation. Ultrastructually, the features of the primordial germ cells, oogonia, and spermatogonia are similar, including nuage, mitochondria, endoplasmic reticulum, and Golgi complexes. J. Morphol. © 2006 Wiley-Liss, Inc. [source]


Comparison of testes structure, spermatogenesis, and spermatocytogenesis in young, aging, and hybrid cichlid fish (Cichlidae, Teleostei)

JOURNAL OF MORPHOLOGY, Issue 3 2003
Lev Fishelson
Abstract Testis structure, spermatogenesis, and spermatocytogenesis were compared in 13 species of cichlid fishes, belonging to the subfamilies Haplochrominae and Tilapinae. The species studied were either mouth brooders, in which fertilization occurs mostly inside the mouth of the brooding fish, or substrate brooders, whose eggs adhere to a substrate over which the sperm is ejaculated. In this study, the embryogenesis of testes anlagen and sperm production was followed in embryos and in fish up to 15 years old, as well as in hybrids of the two subfamilies. In cichlids, the testes are of the unrestricted type and primary spermatogonia develop along the entire length of the developing sperm tubule. The first primary spermatogonia are observed in the testes anlagen 2,5 days after fertilization and they continue to develop in cysts formed by the enveloping Sertoli cells and the intertubular elements. The dimensions of such primary and secondary spermatocysts are correlated with the number of spermatogonia they contain and the corresponding number of mitotic multiplications. The largest mature cysts attained 300 ,m, and contained 2,200,2,400 spermatids in the mouth-brooding species and 2,600,3,200 in the substrate-brooding species. Despite the fact that in such cysts cytoplasmic bridges connect only the isogamete spermatids, the maturation of all cells and consequent spermiation is synchronized. Meristic characters distinguish the sperm of mouth brooders from those of substrate brooders, especially in the number of mitochondria and length of the flagellum. In older fish and hybrids, various changes can be seen in the gametogenic epithelium and intertubular cells. These include thickening of the connective tissue, formation of "yellow" groups of Leydig cells, cell apoptosis and degeneration, and, especially, formation of large spermatogonia, with large, electron-dense nucleoli, that have the cytological characteristics of oocytes. The intra- and interspecific variability of sperm dimensions in the studied cichlids poses an interesting question in the context of sperm competition. J. Morphol. 256:285,300, 2003. © 2003 Wiley-Liss, Inc. [source]


Ethanol Exposure Enhances Apoptosis Within the Testes

ALCOHOLISM, Issue 10 2000
Qianlong Zhu
Background: Chronic ethanol abuse causes testicular atrophy and male infertility in alcoholic men. It is well known that ethanol exposure disrupts the hypothalamic-pituitary-gonadal axis, adversely affects the secretory function of Sertoli cells, and produces oxidative stress within the testes. It is still not clear what cellular mechanisms are responsible for the morphologic alteration of the testes that results in a reduction of testicular mass as a consequence of ethanol exposure. The hypothesis tested was that ethanol enhances apoptosis of testicular germ cells. Methods: In the experiments of chronic ethanol exposure, male Sprague Dawley® rats (Harlan Sprague Dawley, Inc., Indianapolis, IN) were fed Liber-Decarlie liquid diet for 9 weeks. In the experiments of acute ethanol exposure, a small volume of 20% ethanol solution was administered by intratesticular injection. Both 3,-end labeling of isolated testicular deoxyribonucleic acid (DNA) and labeling of apoptotic cells in situ by the terminal deoxynucleotidyl transferase-mediated deoxyuridine 5,-triphosphate nick end-labeling method were used to determine apoptosis rates within the testes. The expression of proteins involved in apoptosis was assessed by reverse transcription-polymerase chain reaction and by Western blotting. Results: The testes of rats that were fed an ethanol-containing liquid diet had more testicular DNA fragmentation than did those of animals that were fed an isocaloric control diet. Ethanol increased the number of apoptotic spermatogonia as well as spermatocytes. Direct intratesticular injections of ethanol solution enhanced testicular DNA fragmentation, suggesting an increase in apoptosis. Moreover, Fas ligand levels were increased within the testes of rats that were chronically fed ethanol. In vitro, ethanol treatment of cultured Sertoli cells enhanced the production of Fas ligand. In addition, testicular levels of p53 messenger ribonucleic acid were increased in rats that were chronically fed ethanol. Conclusions: All of these observations suggest that ethanol enhances testicular germ cell apoptosis. [source]


Spermatogonia and spermatocyte ultrastructure in Hoplias malabaricus (Teleostei, Characiformes: Erythrinidae)

JOURNAL OF ZOOLOGY, Issue 3 2002
José Nazareno Cunha Negrăo
Abstract The Hoplias malabaricus primary spermatogonium shows a large nucleus, central nucleolus, and low electron-dense cytoplasm containing nuages. In cysts, they undergo several mitotic divisions with incomplete cytokinesis, giving rise to secondary spermatogonia. These are smaller than the primary spermatogonia and their nuclei have one or two eccentric nucleoli. Spermatocytes I can be identified by the presence of synaptonemal complexes. Spermatocytes II are smaller than spermatocytes I, displaying roughly compacted chromatin. All these cell types remain interconnected by thick-walled intercellular bridges, which have membranous reinforcements during mitosis and meiosis. These cell types show a well-developed endomembranous system, one of the centrioles anchored to the plasma membrane and small nuages. Their mitochondria are large and circular, with few cristae. In the last generations of spermatogonia, the mitochondria are smaller, elongate and have more cristae. In the spermatocytes, the mitochondria are small and round. Similarities found in relation to germ cells of other teleosts are discussed. [source]


Localizations of intracellular calcium and Ca2+ -ATPase in hamster spermatogenic cells and spermatozoa

MICROSCOPY RESEARCH AND TECHNIQUE, Issue 8 2006
H.L. Feng
Abstract Calcium plays a predominant role regulating many functional processes of spermatogenesis and fertilization. The purpose of the present study is to define the exact location of calcium as well as examine the role it plays during spermatogenesis and sperm capacitation. Testes and epididymides were obtained from adult healthy male hamsters. Spermatozoa were incubated with modified Tyrode's medium up to 4 h at 37°C for sperm capacitation in vitro. Samples of the testes and sperm cells were analyzed by cytochemical techniques to determine the location of calcium and Ca2+ -ATPase and the percentage of acrosome reactions under light and electron microscopy. The data showed that (1) Sertoli cells exhibited numerous calcium precipitates as large, round, electron-dense bodies distributed throughout the cytoplasm and the mitochondrial matrix. Fine calcium precipitates existed in fewer numbers in the intracellular storage sites of spermatogonia and primary spermatocytes, in sharp distinction to secondary spermatocyte and spermatids, which showed an abundance of large and round calcium precipitates, especially in the mitochondrial matrix of spermatids. More calcium deposits were distributed in the plasma membrane (PM), acrosome membrane, and matrices of the acrosome and mitochondria following capacitation; (2) Ca2+ -ATPase was found in the endoplasmic reticulum system and PM of noncapacitated spermatozoa as well as Sertoli cells. Capacitated spermatozoa showed a weak signal. These results suggest that the presence of calcium in spermatogenic cells might play a role in cell growth and differentiation during spermatogenesis. The Ca2+ -ATPase function may be inhibited during capacitation, leading to an increase in acrosomal calcium level and triggering of acrosomal exocytosis. Microsc. Res. Tech., 2006. © 2006 Wiley-Liss, Inc. [source]