Home About us Contact | |||
Spermatid Differentiation (spermatid + differentiation)
Selected AbstractsCentrioles to basal bodies in the spermiogenesis of Mastotermes darwiniensis (Insecta, Isoptera)CYTOSKELETON, Issue 5 2009Maria Giovanna Riparbelli Abstract In addition to their role in centrosome organization, the centrioles have another distinct function as basal bodies for the formation of cilia and flagella. Centriole duplication has been reported to require two alternate assembly pathways: template or de novo. Since spermiogenesis in the termite Mastotermes darwiniensis lead to the formation of multiflagellate sperm, this process represents a useful model system in which to follow basal body formation and flagella assembly. We present evidence of a possible de novo pathway for basal body formation in the differentiating germ cell. This cell also contains typical centrosomal proteins, such as centrosomin, pericentrin-like protein, ,-tubulin, that undergo redistribution as spermatid differentiation proceeds. The spermatid centrioles are long structures formed by nine doublet rather than triplet microtubules provided with short projections extending towards the surrounding cytoplasm and with links between doublets. The sperm basal bodies are aligned in parallel beneath the nucleus. They consist of long regions close to the nucleus showing nine doublets in a cartwheel array devoid of any projections; on the contrary, the short region close to the plasma membrane, where the sperm flagella emerge, is characterized by projections similar to those observed in the centrioles linking the basal body to the plasma membrane. It is hypothesized that this appearance is in connection with the centriole elongation and further with the flagellar axonemal organization. Microtubule doublets of sperm flagellar axonemes are provided with outer dynein arms, while inner arms are rarely visible. Cell Motil. Cytoskeleton 2009. © 2009 Wiley-Liss, Inc. [source] Influence for testicular development and histological peculiarity in the testes of flutamide-induced cryptorchid rat modelINTERNATIONAL JOURNAL OF UROLOGY, Issue 1 2007Kentaro Mizuno Objectives: To investigate influence for the testicular development and to assess the usefulness as an animal model, cryptorchid rats were induced by exposure to flutamide during the fetal period and their testes examined histologically. Methods: Flutamide was injected into the abdomen of pregnant rats for 7 days from the 14th to 20th day of gestation. The male offspring in which cryptorchidism was observed at 28 days after birth were defined as the model rats. They were divided into four groups by dosage of flutamide (2.5 mg, 5 mg, 7.5 mg, 15 mg per day), and their testicular weight, spermatogenesis (modified Johnsen score), and germ cell apoptosis were examined histochemically at 10 weeks after birth. Results: The incidence of cryptorchidism including both unilateral and bilateral in the 2.5, 5, 7.5 and 15-mg flutamide groups was 58.3%, 81.9%, 93.6% and 91.0%, respectively. In the model rats, the undescended testes were located at the caudal end of the abdominal cavity, and these testes weighed less than the contra-descended testes in each group. Histologically, apoptotic cells were markedly increased, the seminiferous tubules were degenerated and disturbance of spermatid differentiation was observed in the undescended testes compared with the normal or contra-lateral descended testes. Conclusions: We found out that the incidence of undescended testes increased in a flutamide dose-dependent manner. The findings of histological examination were independent of the administrated dose of flutamide and it is suggested that exposure of the testes to abdominal temperature causes spermatogenic arrest with germ cell apoptosis. The present animal model indicates high incidence of above 90%, has no surgical stress and dose not require special techniques. We believe that the present model is a useful tool for the understanding of pathogenesis and treatment of cryptorchidism and further biological research into spermatogenesis. [source] Premature translation of transition protein 2 mRNA causes sperm abnormalities and male infertilityMOLECULAR REPRODUCTION & DEVELOPMENT, Issue 3 2007Khailun Tseden Abstract During mammalian spermiogenesis somatic histones are replaced at first by transition proteins, which are in turn replaced by the protamines, forming the sperm nucleoprotamines. It is believed that transition protein 2 (Tnp2) is necessary for maintaining the normal processing of protamines and, consequently, the completion of chromatin condensation. The transition protein mRNAs are stored in translationally inert messenger ribonucleoprotein particles for up to 7 days until translational activation in elongated spermatids. Substantial evidence suggests an involvement of 3,untranslated region (UTR) in the translational regulation of the Tnp2 mRNAs. In order to determine the role of Tnp2 3,UTR in translational regulation and to study whether the translational repression of Tnp2 mRNA is necessary for normal spermatid differentiation in mice, we generated transgenic mice that carry a Tnp2-hGH transgene. In this transgene, 3,UTR of Tnp2 gene was replaced by 3, 3,UTR of human growth hormone gene. In these transgenic animals, transcription and translation of Tnp2 occur simultaneously in round spermatids which is an evidence for involvement of Tnp2 3,UTR in its translation repression. Premature translation of Tnp2 mRNA caused abnormal head morphogenesis, reduced sperm motility and male infertility. These results show clearly that a strict temporal and stage-specific Tnp2 translation is necessary for the correct differentiation of round spermatids into mature spermatozoa and for male fertility. Mol. Reprod. Dev. © 2006 Wiley-Liss, Inc. [source] Expression and characterization of the PEBP homolog genes from Drosophila,ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY (ELECTRONIC), Issue 2 2009Gilles Rautureau Abstract The phosphatidylethanolamine binding proteins (PEBPs) family is evolutionarily conserved and involved in different physiological phenomena. PEBPs were found in many species from bacteria to mammals. Despite numerous studies, PEBPs' biological function and mode of action remain elusive. Based on sequence homology, seven PEBP genes were detected in the Drosophila genome. Only one of them, the odorant binding protein (OBP), has been characterized. To date nothing is known concerning the expression pattern and biological roles of the six other PEBP genes. By RT-PCR and Western blot analysis, we examined expression of the PEBPs in different tissues and embryos. The 6 PEBPs were differentially expressed. Only one, CG10298, is specific of only one tissue: the testis. Additionally, by comparing in wild type and male-sterile mutants we show that CG10298 is present only during spermatid differentiation. Furthermore, by comparing structural parameters of the six PEBP proteins with those of human PEBP-1, we have established that PEBP CG10298 is most closely related to human PEBP. © 2009 Wiley Periodicals, Inc. [source] |