Spawning Habitat (spawning + habitat)

Distribution by Scientific Domains


Selected Abstracts


Modelling potential spawning habitat of sardine (Sardina pilchardus) and anchovy (Engraulis encrasicolus) in the Bay of Biscay

FISHERIES OCEANOGRAPHY, Issue 1 2007
BENJAMIN PLANQUE
Abstract Large amplitude variations in recruitment of small pelagic fish result from interactions between a fluctuating environment and population dynamics processes such as spawning. The spatial extent and location of spawning, which is critical to the fate of eggs and larvae, can vary strongly from year to year, as a result of changing population structure and environmental conditions. Spawning habitat can be divided into ,potential spawning habitat', defined as habitat where the hydrographic conditions are suitable for spawning, ,realized spawning habitat', defined as habitat where spawning actually occurs, and ,successful spawning habitat', defined as habitat from where successful recruitment has resulted. Using biological data collected during the period 2000,2004, as well as hydrographic data, we investigate the role of environmental parameters in controlling the potential spawning habitat of anchovy and sardine in the Bay of Biscay. Anchovy potential spawning habitat appears to be primarily related to bottom temperature followed by surface temperature and mixed-layer depth, whilst surface and bottom salinity appear to play a lesser role. The possible influence of hydrographic factors on the spawning habitat of sardine seems less clear than for anchovy. Modelled relationships between anchovy and sardine spawning are used to predict potential spawning habitat from hydrodynamical simulations. The results show that the seasonal patterns in spawning are well reproduced by the model, indicating that hydrographic changes may explain a large fraction of spawning spatial dynamics. Such models may prove useful in the context of forecasting potential impacts of future environmental changes on sardine and anchovy reproductive strategy in the north-east Atlantic. [source]


Spawning habitat and daily egg production of sardine (Sardina pilchardus) in the eastern Mediterranean

FISHERIES OCEANOGRAPHY, Issue 4 2006
S. SOMARAKIS
Abstract Spawning habitats of two eastern Mediterranean sardine, Sardina pilchardus (Walbaum, 1792), stocks (coastal waters of central Aegean and Ionian Seas) are characterized from daily egg production method (DEPM) surveys conducted during the peak of the spawning period. The latter occurs earlier in the Aegean Sea (December) than in the less-productive Ionian Sea (February). Single-parameter quotient analysis showed that the preferred bottom depth for spawning was 40,90 m in both areas but sardine selected sites of increased zooplankton in the Aegean Sea during December and increased fluorescence in the Ionian Sea during February. Estimates of daily egg production (P) and spawning stock biomass (B) were about four times lower for the Ionian Sea (P = 7.81 eggs m,2, B = 3652 tonnes) than the Aegean Sea (P = 27.52 eggs m,2, B = 16 174 tonnes). We suggest that zooplankton biomass might not be sufficient to support sardine reproduction in the highly oligotrophic Ionian Sea where the very small sardine stock may rely on the late-winter phytoplankton bloom. Actively selecting sites with increased zooplankton or phytoplankton and feeding plasticity (the well-known switching from selective particle feeding to non-selective filter feeding in sardines) are interpreted as adaptations to grow and reproduce optimally at varying prey conditions. Despite differences in temperature and productivity regimes, reproductive performance of sardine in the Ionian Sea was very similar to that in the Aegean Sea during the peak of the spawning period. In comparing adult parameters from DEPM applications to Sardina and Sardinops stocks around the world, a highly significant linear relation emerged between mean batch fecundity (F) and mean weight of mature female (W, g) (F = 0.364W, r2 = 0.98). The latter implies that, during the peak of the spawning period, mean relative batch fecundity (eggs g,1) of sardine is fairly constant in contrasting ecosystems around the world. [source]


A metapopulation perspective for salmon and other anadromous fish

FISH AND FISHERIES, Issue 4 2007
Nicolas Schtickzelle
Abstract Salmonids are an important component of biodiversity, culture and economy in several regions, particularly the North Pacific Rim. Given this importance, they have been intensively studied for about a century, and the pioneering scientists recognized the critical link between population structure and conservation. Spatial structure is indeed of prime importance for salmon conservation and management. At first glance, the essence of the metapopulation concept, i.e. a population of populations, widely used on other organisms like butterflies, seems to be particularly relevant to salmon, and more generally to anadromous fish. Nevertheless, the concept is rarely used, and barely tested. Here, we present a metapopulation perspective for anadromous fish, assessing in terms of processes rather than of patterns the set of necessary conditions for metapopulation dynamics to exist. Salmon, and particularly sockeye salmon in Alaska, are used as an illustrative case study. A review of life history traits indicates that the three basic conditions are likely to be fulfilled by anadromous salmon: (i) the spawning habitat is discrete and populations are spatially separated by unsuitable habitat; (ii) some asynchrony is present in the dynamics of more or less distant populations and (iii) dispersal links populations because some salmon stray from their natal population. The implications of some peculiarities of salmon life history traits, unusual in classical metapopulations, are also discussed. Deeper understanding of the population structure of anadromous fish will be advanced by future studies on specific topics: (i) criteria must be defined for the delineation of suitable habitats that are based on features of the biotope and not on the presence of fish; (ii) the collection of long-term data and the development of improved methods to determine age structure are essential for correctly estimating levels of asynchrony between populations and (iii) several key aspects of dispersal are still poorly understood and need to be examined in detail: the spatial and temporal scales of dispersal movements, the origin and destination populations instead of simple straying rates, and the relative reproductive success of immigrants and residents. [source]


Restoration of sturgeons: lessons from the Caspian Sea Sturgeon Ranching Programme

FISH AND FISHERIES, Issue 3 2000
D.H. Secor
Depletion of sturgeon stocks world-wide has increased interest in aquaculture-based restoration programmes. The Caspian Sea Sturgeon Ranching Programme (SRP) of the former Soviet Union represents a unique opportunity to evaluate expense, benefits and potential ecological and genetic effects of such restoration programmes. The SRP was initiated in the 1950s to compensate for lost spawning habitat in the Volga River and elsewhere. After its completion in 1962, the Volgograd Dam reduced spawning grounds in the Volga River system, the principal spawning tributary of the Caspian Sea, by ,80%. For two of the three commercial sturgeon species (Russian sturgeon, Acipenser güldenstädti, and stellate sturgeon, A. stellatus), yields improved after the imposition of the 1962 moratorium on sturgeon harvests in the Caspian Sea. Volga River fisheries were managed for spawning escapement. Although imprecisely known, the contribution of the millions of stocked Russian and stellate juveniles during 1962,91 was most likely important to sustaining fisheries, although less so (contributing to <30% of the adult stock) than natural recruitment. Apparently, reduced spawning grounds, supplemented with artificial spawning reefs were sufficient to support reproduction and large fishery yields of Russian and stellate sturgeons. For beluga sturgeon, Huso huso, harvests in the Volga River were nearly all dependent upon hatchery stocking. Beluga sturgeon spawning grounds were mostly eliminated with the construction of the Volgograd Dam. Without the hatchery programme, beluga sturgeon in the Volga River and Caspian Sea would in all likelihood have been extirpated. Currently, sturgeons are severely depleted in the Volga River and Caspian Sea due to poaching and lack of co-operation between countries exploiting the species. Aquaculture-based restoration in Russia is now viewed a chief means of rebuilding stocks of Caspian Sea sturgeons. [source]


Characteristics and rehabilitation of the spawning habitats of the sea trout, Salmo trutta, in Gotland (Sweden)

FISHERIES MANAGEMENT & ECOLOGY, Issue 1 2004
J.-F. Rubin
Abstract Characteristics of the natural spawning habitat of sea trout, Salmo trutta L., were studied in Själsöån, a small stream of Gotland, Sweden, from 1992 to 1999. Each year, trout spawned on 17 ± 7 different areas (156 places ha,1). Most of the spawning grounds were used every year. Overcutting was evident for at least 60% of the spawning grounds. Fish spawned on a gravel of 19 ± 7 mm in diameter. From 1978 to 1992, 242 artificial spawning grounds were constructed by the Gotland Sport Fishermen Association in four Gotland streams. A sediment trap was dug upstream to the spawning grounds. The artificial spawning ground comprised of a downstream V-shape stream deflector of large stones with a log weir at the narrowest point of the deflector. Upstream of the dam, 15,60 mm diameter gravel was deposited to constitute the spawning ground substratum. To keep the installation efficient, maintenance is needed every year before the spawning season. [source]


Ichthyoplankton-based spawning dynamics of blue mackerel (Scomber australasicus) in south-eastern Australia: links to the East Australian Current

FISHERIES OCEANOGRAPHY, Issue 4 2008
FRANCISCO J. NEIRA
Abstract We describe findings of three ichthyoplankton surveys undertaken along south-eastern Australia during spring (October 2002, 2003) and winter (July 2004) to examine spawning habitat and dynamics of blue mackerel (Scomber australasicus). Surveys covered ,860 nautical miles between southern Queensland (Qld; 24.6°S) and southern New South Wales (NSW; 41.7°S), and were mainly centred on the outer shelf including the shelf break. Egg identifications were verified applying mtDNA barcoding techniques. Eggs (n = 2971) and larvae (n = 727; 94% preflexion) occurred both in spring and winter, and were confined to 25.0,34.6°S. Greatest abundances (numbers per 10 m2) of eggs (1214,7390) and larvae (437,1172) occurred within 10 nm shoreward from the break in northern NSW. Quotient analyses on egg abundances revealed that spawning is closely linked to a combination of bathymetric and hydrographic factors, with the outer shelf as preferred spawning area, in waters 100,125 m deep with mean temperatures of 19,20°C. Eggs and larvae in spring occurred in waters of the East Australian Current (EAC; 20.6,22.3°C) and mixed (MIX; 18.5,19.8°C) waters, with none occurring further south in the Tasman Sea (TAS; 16.0,17.0°C). Results indicate that at least some of the south-eastern Australian blue mackerel stock spawns during winter-spring between southern Qld and northern NSW, and that no spawning takes place south of 34.6°S due to low temperatures (<17°C). Spawning is linked to the EAC intrusion, which also facilitates the southward transport of eggs and larvae. Since spring peak egg abundances came from where the EAC deflects offshore, eggs and larvae are possibly being advected eastwards along this deflection front. This proposition is discussed based on recent data on blue mackerel larvae found apparently entrained along the Tasman Front. [source]


Modelling potential spawning habitat of sardine (Sardina pilchardus) and anchovy (Engraulis encrasicolus) in the Bay of Biscay

FISHERIES OCEANOGRAPHY, Issue 1 2007
BENJAMIN PLANQUE
Abstract Large amplitude variations in recruitment of small pelagic fish result from interactions between a fluctuating environment and population dynamics processes such as spawning. The spatial extent and location of spawning, which is critical to the fate of eggs and larvae, can vary strongly from year to year, as a result of changing population structure and environmental conditions. Spawning habitat can be divided into ,potential spawning habitat', defined as habitat where the hydrographic conditions are suitable for spawning, ,realized spawning habitat', defined as habitat where spawning actually occurs, and ,successful spawning habitat', defined as habitat from where successful recruitment has resulted. Using biological data collected during the period 2000,2004, as well as hydrographic data, we investigate the role of environmental parameters in controlling the potential spawning habitat of anchovy and sardine in the Bay of Biscay. Anchovy potential spawning habitat appears to be primarily related to bottom temperature followed by surface temperature and mixed-layer depth, whilst surface and bottom salinity appear to play a lesser role. The possible influence of hydrographic factors on the spawning habitat of sardine seems less clear than for anchovy. Modelled relationships between anchovy and sardine spawning are used to predict potential spawning habitat from hydrodynamical simulations. The results show that the seasonal patterns in spawning are well reproduced by the model, indicating that hydrographic changes may explain a large fraction of spawning spatial dynamics. Such models may prove useful in the context of forecasting potential impacts of future environmental changes on sardine and anchovy reproductive strategy in the north-east Atlantic. [source]


Assessing the variability of hydrographic processes influencing the life cycle of the Sicilian Channel anchovy, Engraulis encrasicolus, by satellite imagery

FISHERIES OCEANOGRAPHY, Issue 1 2005
JESÚS GARCÍA LAFUENTE
Abstract Three oceanographic surveys carried out in the Sicilian Channel during the spawning season (June to July) of anchovy (Engraulis encrasicolus) showed a close relationship between anchovy reproductive strategy and important hydrographic structures. A time series of satellite-derived sea surface temperature images of the Sicilian Channel were analysed by means of empirical orthogonal functions and the dominant empirical modes were studied in detail. The first empirical mode captured much of the original variance and reproduced the trajectory of the Atlantic Ionian Stream (AIS), the principal hydrodynamic feature of the area. The time coefficients of modes 1 and 2 had seasonal signals which, when combined, accounted for the enhancement of the thermal front, clearly visible off Cape Passero (southernmost coast of Sicily) during summer. As the area constituted the principal nursery ground of the Sicilian Channel anchovy, the combination of the time coefficients of these modes was considered a potential indicator of the food particle concentration usually associated with oceanic fronts, which provided the energy requirements for larval growth. Mode 3 described the north/south displacements of the mean AIS trajectory, which modified the surface temperature regime of the anchovy spawning habitat. Therefore, the time coefficients of this mode were used as a potential indicator of anchovy spawning habitat variability. The capability of time coefficients of modes 2 and 3 to modify the main pattern depicted by mode 1 were tested successfully against in situ oceanographic observations. [source]


Fine scale spatial pattern of Pacific sardine (Sardinops sagax) and northern anchovy (Engraulis mordax) eggs

FISHERIES OCEANOGRAPHY, Issue 4 2004
K. Alexandra Curtis
Abstract Pacific sardine (Sardinops sagax) and northern anchovy (Engraulis mordax) eggs exhibited different spatial structure on the scale of 0.75,2.5 km in two egg patches sampled in the Southern California Bight in April 2000. Plankton samples were collected at 4-min intervals with a Continuous Underway Fish Egg Sampler (CUFES) on 5 × 5 km grids centered on surface drifters. Variograms were calculated for sardine and anchovy eggs in Lagrangian coordinates, using abundances of individual developmental stages grouped into daily cohorts. Model variograms for sardine eggs have a low nugget effect, about 10% of the total variance, indicating high autocorrelation between adjacent samples. In contrast, model variograms for anchovy eggs have a high nugget effect of 50,100%, indicating that most of the variance at the scales sampled is spatially unstructured. The difference between observed spatial patterns of sardine and anchovy eggs on this scale may reflect the behavior of the spawning adults: larger, faster, more abundant fish may organize into larger schools with greater structure and mobility that create smoother egg distributions. Size and mobility vary with population size in clupeoids. The current high abundance of sardines and low abundance of anchovy off California agree with the greater autocorrelation of sardine egg samples and the observed tendency for locations of anchovy spawning to be more persistent on the temporal scale of days to weeks. Thus the spatial pattern of eggs and the persistence of spawning areas are suggested to depend on species, population size and age structure, spawning intensity and characteristic physical scales of the spawning habitat. [source]


Variability in the spawning habitat of Pacific sardine (Sardinops sagax) off southern and central California

FISHERIES OCEANOGRAPHY, Issue 6 2003
Ronald J. Lynn
Abstract The spatial pattern of sardine spawning as revealed by the presence of sardine eggs is examined in relation to sea surface temperature (SST) and mean volume backscatter strength (MVBS) measured by a 150 kHz acoustic Doppler current profiler (ADCP) during four spring surveys off central and southern California in 1996,99. Studies in other regions have shown that MVBS provides an excellent measure of zooplankton distribution and density. Zooplankton biomass as measured by survey net tows correlates well with concurrently measured MVBS. The high along-track resolution of egg counts provided by the Continuous Underway Fish Egg Sampler (CUFES) is a good match to the ADCP-based data. Large interannual differences in the pattern and density of sardine eggs are clearly related to the concurrently observed patterns of surface temperature and MVBS. The strong spatial relationship between sardine eggs and MVBS is particularly evident because of the large contrast in zooplankton biomass between the 1998 El Niño and 1999 La Niña. The inshore distribution of sardine spawning appears to be limited by the low temperatures of freshly upwelled waters, although the value of the limiting temperature varies between years. Often there is an abrupt offshore decrease in MVBS that is coincident with the offshore boundary of sardine eggs. Possible reasons for this association of sardine eggs and high zooplankton biomass include an evolved strategy that promotes improved opportunity of an adequate food supply for subsequent larval development, and/or adult nutrient requirements for serial spawning. Hence, the distribution of these parameters can be used as an aid for delineating the boundaries of sardine spawning habitat. [source]


Sediment infiltration traps: their use to monitor salmonid spawning habitat in headwater tributaries of the Cascapédia River, Québec

HYDROLOGICAL PROCESSES, Issue 20 2005
André E. Zimmermann
Abstract Sediment infiltration can clog salmon nests and reduce egg survival. As a countermeasure, environmental managers often deploy infiltration traps to monitor sediment infiltration. Traps provide a repeatable means of measuring infiltration and enable comparisons to be made between sites. Results from infiltration rates measured with traps have also been used to estimate infilling rates into salmon nests. Application of these data is questionable, as the composition of the bed and the amount of fine sediment within the bed is known to affect infiltration rates. Thus, infiltration rates measured with infiltration traps may differ from the infiltration rates occurring in redd and riffle gravels. To examine how relationships between sediment infiltration rates varied between four watersheds, we continuously monitored suspended sediment transport, shear stress and infiltration rates at four sites over 5 months. We also compared infiltration rates measured with infiltration traps with changes in the hydraulic conductivity and subsurface grain size distribution of adjacent artificially constructed salmon nests and natural riffle gravels. Among the four watersheds, clear differences in sediment infiltration rates were observed. The differences correlated with the subsurface silt content but no strong relationship existed between land-use or basin physiography/geology. Despite observing an average of 30 kg m,2 of sediment finer than 2 mm being deposited in the infiltration traps during the study, no change in redd or riffle substrate was observed. If the deposition rates measured with the traps reflect the processes in redds, enough sediment would have been deposited to inhibit egg emergence. However, no reduction in egg survival to the eyed stage was observed. In summary, our results show that infiltration traps with clean gravels can be used to detect intersite differences in sediment transport regimes. Extrapolations of sediment infiltration rates measured with such collectors to estimate infiltration rates in redds or riffles is, however, flawed. Copyright © 2005 John Wiley & Sons, Ltd. [source]


Kootenai River velocities, depth, and white sturgeon spawning site selection , a mystery unraveled?

JOURNAL OF APPLIED ICHTHYOLOGY, Issue 6 2009
V. L. Paragamian
Summary The Kootenai River white sturgeon Acipenser transmontanus population in Idaho, US and British Columbia (BC), Canada became recruitment limited shortly after Libby Dam became fully operational on the Kootenai River, Montana, USA in 1974. In the USA the species was listed under the Endangered Species Act in September of 1994. Kootenai River white sturgeon spawn within an 18-km reach in Idaho, river kilometer (rkm) 228.0,246.0. Each autumn and spring Kootenai River white sturgeon follow a ,short two-step' migration from the lower river and Kootenay Lake, BC, to staging reaches downstream of Bonners Ferry, Idaho. Initially, augmented spring flows for white sturgeon spawning were thought to be sufficient to recover the population. Spring discharge mitigation enhanced white sturgeon spawning but a series of research investigations determined that the white sturgeon were spawning over unsuitable incubation and rearing habitat (sand) and that survival of eggs and larvae was negligible. It was not known whether post-Libby Dam management had changed the habitat or if the white sturgeon were not returning to more suitable spawning substrates farther upstream. Fisheries and hydrology researchers made a team effort to determine if the spawning habitat had been changed by Libby Dam operations. Researchers modeled and compared velocities, sediment transport, and bathymetry with post-Libby Dam white sturgeon egg collection locations. Substrate coring studies confirmed cobbles and gravel substrates in most of the spawning locations but that they were buried under a meter or more of post-Libby Dam sediment. Analysis suggested that Kootenai River white sturgeon spawn in areas of highest available velocity and depths over a range of flows. Regardless of the discharge, the locations of accelerating velocities and maximum depth do not change and spawning locations remain consistent. Kootenai River white sturgeon are likely spawning in the same locations as pre-dam, but post-Libby Dam water management has reduced velocities and shear stress, thus sediment is now covering the cobbles and gravels. Although higher discharges will likely provide more suitable spawning and rearing conditions, this would be socially and politically unacceptable because it would bring the river elevation to or in excess of 537.66 m, which is flood stage. Thus, support should be given to habitat modifications incorporated into a management plan to restore suitable habitat and ensure better survival of eggs and larvae. [source]


Importance of the olfactory sense to migratory sea lampreys Petromyzon marinus seeking riverine spawning habitat

JOURNAL OF FISH BIOLOGY, Issue 4 2010
L. A. Vrieze
This study tested the hypothesis that the sea lamprey Petromyzon marinus, a diadromous species of fish, relies on innately discerned odours, including pheromones, to locate riverine spawning habitat. Migratory, sexually immature P. marinus were captured as they entered streams flowing into the Great Lakes, and their olfactory systems were occluded or not by injecting either innocuous dental impression material or a saline control into their nasopores. Animals were then released back into lakes or streams and their recapture rates in stream traps noted. When released into Lake Huron, P. marinus with intact (functional) olfactory systems were very successful in locating rivers (recapture rates ranged up to 65%), while animals with occluded nasopores were virtually unable to do so and had recapture rates five to 20 times lower than intact animals. With few exceptions, intact fish entered the stream closest to their release point within a few days, irrespective of where they had been originally captured; their ability to locate streams is apparently innate and well developed. In contrast, when released within streams, both intact and occluded P. marinus successfully swam upstream to traps for several days although the ability of the former exceeded that of the latter after this period. Migratory P. marinus rely heavily on olfactory cues, of which a larval pheromone is presumably one, to locate river mouths and to a lesser extent to promote upstream movement within rivers. [source]


Suitability criteria for spawning habitat of riverine European grayling

JOURNAL OF FISH BIOLOGY, Issue 5 2002
M. Nykänen
Generalized suitability curves, developed for the spawning habitat of grayling Thymallus thymallus by combining new preference data with information available in the literature, provided optimal ranges for dominant substratum size, water depth and mean water velocity. These were 16,32 mm, 30,40 cm, and 50,60 cm s,1, respectively. [source]


Fine-scale natal homing and localized movement as shaped by sex and spawning habitat in Chinook salmon: insights from spatial autocorrelation analysis of individual genotypes

MOLECULAR ECOLOGY, Issue 14 2006
H. M. NEVILLE
Abstract Natal homing is a hallmark of the life history of salmonid fishes, but the spatial scale of homing within local, naturally reproducing salmon populations is still poorly understood. Accurate homing (paired with restricted movement) should lead to the existence of fine-scale genetic structuring due to the spatial clustering of related individuals on spawning grounds. Thus, we explored the spatial resolution of natal homing using genetic associations among individual Chinook salmon (Oncorhynchus tshawytscha) in an interconnected stream network. We also investigated the relationship between genetic patterns and two factors hypothesized to influence natal homing and localized movements at finer scales in this species, localized patterns in the distribution of spawning gravels and sex. Spatial autocorrelation analyses showed that spawning locations in both sub-basins of our study site were spatially clumped, but the upper sub-basin generally had a larger spatial extent and continuity of redd locations than the lower sub-basin, where the distribution of redds and associated habitat conditions were more patchy. Male genotypes were not autocorrelated at any spatial scale in either sub-basin. Female genotypes showed significant spatial autocorrelation and genetic patterns for females varied in the direction predicted between the two sub-basins, with much stronger autocorrelation in the sub-basin with less continuity in spawning gravels. The patterns observed here support predictions about differential constraints and breeding tactics between the two sexes and the potential for fine-scale habitat structure to influence the precision of natal homing and localized movements of individual Chinook salmon on their breeding grounds. [source]


Habitat suitability analysis for lacustrine brown trout (Salmo trutta) in Lake Walchensee, Germany: implications for the conservation of an endangered flagship species

AQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS, Issue 1 2010
Marco Denic
Abstract 1.The lacustrine brown trout (Salmo trutta) is endangered and of high conservation importance. In the only spawning habitat of the population in the Bavarian Lake Walchensee, the River Obernach, a substantial decrease in spawning runs has been reported. In this study, the present ecological state of the spawning stream was analysed with the objective of identifying life-stage specific limitations to successful recruitment attributable to deficiencies in (i) spawning migration, (ii) spawning habitat quality, and (iii) habitat quality for juveniles. 2.Structural stream analysis showed that discharge and several migration barriers , particularly near the river outlet into the lake , prevent successful spawning migrations at normal water levels. Migration barriers are probably the main limiting factor for reproduction of lacustrine brown trout, whereas structural variability of the Obernach meets the habitat requirements of both spawners and juveniles. 3.Spawning site quality was suitable for trout, as indicated by stream substratum texture and high exchange rates between free-flowing water and the interstitial zone in physico-chemical parameters (redox potential, dissolved oxygen, pH, temperature and conductivity). 4.Analyses of fish community structure revealed dominance of lithophilic species, in particular of riverine brown trout (Salmo trutta). Its density and intact demographic population structure suggest that spawning and juvenile habitat quality for salmonids is not limiting. Recapture of stocked lacustrine trout juveniles also indicates habitat suitability for the juvenile stage. 5.In conclusion, the results show that the methodology used in this study is suitable for the identification of life-stage specific habitat deficiencies in lacustrine brown trout and other fish species. Availability of habitat data throughout the species' distribution range is a first crucial step for the development of an effective recovery plan. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Post-release movements and habitat use of robust redhorse transplanted to the Ocmulgee River, Georgia,

AQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS, Issue 2 2009
Timothy B. Grabowski
Abstract 1.Robust redhorse Moxostoma robustum is an imperiled, potadromous fish in the south-eastern USA. Initial recovery efforts have focused on supplementing existing populations and establishing refugial populations through extensive stocking programmes. However, assessment of the success of these programmes has not yet been conducted, and there are few reports evaluating the effectiveness of such programmes with other potadromous species. 2.Radio telemetry was employed to assess the effectiveness of a stocking programme aimed at addressing whether stocked individuals would remain in an area free of introduced predators and ascertaining the ability of stocked fish to integrate into a resident population. 3.Hatchery-reared robust redhorse were captured from refugial populations established in other river systems and were transferred to the Ocmulgee River, Georgia where a population of hatchery-reared individuals and an unknown number of wild fish reside. 4.These transferred robust redhorse exhibited an exploratory phase for the first 3 months before adopting behaviour patterns, including spawning migrations, that were consistent with those reported for wild fish in other systems. However, some individuals seemed unable to locate suitable spawning habitat. 5.Approximately half of the radio-tagged fish remained within the area free of introduced predators. 6.At least some radio-tagged robust redhorse fully integrated into the resident population as evidenced by their presence in spawning aggregations with resident individuals. 7.The effectiveness of a stocking programme is dependent upon the ability of stocked individuals to integrate into an existing population or replicate the behaviour and functionality of a resident population. Evaluations of stocking programmes should incorporate assessments of behaviour in addition to surveys to estimate abundance and survivorship and genetic assessments of augmentation of effective population sizes. Published in 2008 by John Wiley & Sons, Ltd. [source]


Modelling potential spawning habitat of sardine (Sardina pilchardus) and anchovy (Engraulis encrasicolus) in the Bay of Biscay

FISHERIES OCEANOGRAPHY, Issue 1 2007
BENJAMIN PLANQUE
Abstract Large amplitude variations in recruitment of small pelagic fish result from interactions between a fluctuating environment and population dynamics processes such as spawning. The spatial extent and location of spawning, which is critical to the fate of eggs and larvae, can vary strongly from year to year, as a result of changing population structure and environmental conditions. Spawning habitat can be divided into ,potential spawning habitat', defined as habitat where the hydrographic conditions are suitable for spawning, ,realized spawning habitat', defined as habitat where spawning actually occurs, and ,successful spawning habitat', defined as habitat from where successful recruitment has resulted. Using biological data collected during the period 2000,2004, as well as hydrographic data, we investigate the role of environmental parameters in controlling the potential spawning habitat of anchovy and sardine in the Bay of Biscay. Anchovy potential spawning habitat appears to be primarily related to bottom temperature followed by surface temperature and mixed-layer depth, whilst surface and bottom salinity appear to play a lesser role. The possible influence of hydrographic factors on the spawning habitat of sardine seems less clear than for anchovy. Modelled relationships between anchovy and sardine spawning are used to predict potential spawning habitat from hydrodynamical simulations. The results show that the seasonal patterns in spawning are well reproduced by the model, indicating that hydrographic changes may explain a large fraction of spawning spatial dynamics. Such models may prove useful in the context of forecasting potential impacts of future environmental changes on sardine and anchovy reproductive strategy in the north-east Atlantic. [source]


Reproduction biology of pikeperch (Sander lucioperca (L.)) , a review

ECOLOGY OF FRESHWATER FISH, Issue 2 2003
J. Lappalainen
Abstract,,, The present review focuses on the reproduction biology of pikeperch (Sander lucioperca (L.)). Aspects like maturity, fecundity, spawning migrations, spawning habitats, onset of spawning, and development time of eggs were reviewed. The onset of maturity is reached at younger age in southern than northern populations due to higher growth rate in the south. Males mature at smaller size and are on average younger than females. Absolute fecundity is closely related to the length and weight, but no clear relationship could be found between relative fecundity and length. Statistically significant relationships were found between the onset of spawning and latitude, and between the duration of the development time of eggs and stable water temperature. Near the southern limits of distribution, the onset of spawning is in February while near the northern limits it is in June. The interannual variability in fecundity and in the onset of maturity and further the factors affecting them have not been studied much. Furthermore, it is not known whether these variations could affect the population dynamics of pikeperch. Little is also known about the actual spawning behaviour of pikeperch in natural habitats. This is probably due to the typical spawning habitats located at 1,3 m depth in waters with high turbidity and low visibility. Even though the homing behaviour to the same spawning areas is well developed in adults, it is not known whether the adults were actually born in the same area. [source]


Toxicity of dispersed weathered crude oil to early life stages of Atlantic herring (Clupea harengus)

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 5 2010
Stephen McIntosh
Abstract Reports of the chronic toxicity of dispersed crude oil to early life stages of fish perpetuate uncertainty about dispersant use. However, realistic exposures to dispersed oil in the water column are thought to be much briefer than exposures associated with chronic toxicity testing. To address this issue, the toxicity of dispersed weathered oil to early life stages of Atlantic herring (Clupea harengus) was tested for short exposure durations, ranging from 1 to 144,h. Toxicity was a function of concentration and duration of exposure, as well as of the life stage exposed. Medium South American crude oil dispersed with Corexit 9500 caused blue sac disease in embryos, but not in free-swimming embryos. The age of embryos was negatively correlated with their sensitivity to oil; those freshly fertilized were most sensitive. Sensitivity increased after hatch, with free-swimming embryos showing signs of narcosis. Gametes were also tested; dispersed oil dramatically impaired fertilization success. For exposures of less than 24,h, gametes and free-swimming embryos were the most sensitive life stages. For those of more than 24,h, young embryos (<1 d old) were most sensitive. The results are presented as statistical models that could assist decisions about dispersant use in the vicinity of fish spawning habitats. Environ. Toxicol. Chem. 2010;29:1160,1167. © 2010 SETAC [source]


Migration of rheophilic fish in the large lowland rivers Meuse and Rhine, the Netherlands

FISHERIES MANAGEMENT & ECOLOGY, Issue 5-6 2008
J. J. DE LEEUW
Abstract, Large-scale migratory patterns of adult rheophilic fish [barbel, Barbus barbus (L.), chub, Leuciscus cephalus (L.), ide, Leuciscus idus (L.), nase, Chondrostoma nasus (L.)] were studied in relation to habitat quality and possible migration barriers in the lower rivers Meuse and Rhine, the Netherlands, using a telemetry system with transponders and detection stations based on inductive coupling. Most fish moved over short distances (<10 km), especially those residing in river stretches with high habitat diversity year-round. About 16% of fish used river stretches over 50 km and two ide moved more than 200 km along free-flowing river stretches. One-third of barbel, chub and nase from a Weir-regulated river stretch moved upstream during the spawning season to spawning habitats. Some fish resided in the areas immediately downstream of weirs and fishways during the spawning season, although it was unclear to what extent these observations reflected habitat choice or barriers to migration. [source]


Characteristics and rehabilitation of the spawning habitats of the sea trout, Salmo trutta, in Gotland (Sweden)

FISHERIES MANAGEMENT & ECOLOGY, Issue 1 2004
J.-F. Rubin
Abstract Characteristics of the natural spawning habitat of sea trout, Salmo trutta L., were studied in Själsöån, a small stream of Gotland, Sweden, from 1992 to 1999. Each year, trout spawned on 17 ± 7 different areas (156 places ha,1). Most of the spawning grounds were used every year. Overcutting was evident for at least 60% of the spawning grounds. Fish spawned on a gravel of 19 ± 7 mm in diameter. From 1978 to 1992, 242 artificial spawning grounds were constructed by the Gotland Sport Fishermen Association in four Gotland streams. A sediment trap was dug upstream to the spawning grounds. The artificial spawning ground comprised of a downstream V-shape stream deflector of large stones with a log weir at the narrowest point of the deflector. Upstream of the dam, 15,60 mm diameter gravel was deposited to constitute the spawning ground substratum. To keep the installation efficient, maintenance is needed every year before the spawning season. [source]


Larval fish assemblages along the south-eastern Australian shelf: linking mesoscale non-depth-discriminate structure and water masses

FISHERIES OCEANOGRAPHY, Issue 4 2008
JOHN P. KEANE
Abstract We present findings of the first mesoscale study linking larval fish assemblages and water masses along shelf waters off south-eastern Australia (southern Queensland-New South Wales), based on vertical, non-depth discriminate data from surveys in October 2002 and 2003 (spring) and July 2004 (winter). Clustering and ordination were employed to discriminate between larval assemblages and, for the first time, to define water masses from water column temperature frequencies. Surveys yielded 18 128 larval fishes comprising 143 taxa from 96 identifiable families, with small pelagics accounting for 53% of the total. Three major recurrent larval assemblages were identified during the study, each of which matched one of three water masses, namely East Australian Current to the north (EAC; 20.5,23.4°C), Tasman Sea to the south (TAS; 14.8,17.5°C), and mixed EAC,TAS water in between (MIX; 18.3,19.9°C). All three assemblages were present in spring, whereas only EAC and MIX occurred in the more northerly constrained winter survey. Furthermore, boundaries between the EAC, MIX and TAS assemblages were found to be dynamic, with locations shifting temporally and spatially depending on EAC extent. Assemblage composition differed significantly between water masses across surveys, with EAC,TAS being most dissimilar. Such contrast was due to the presence of tropical/temperate taxa in EAC, primarily temperate-associated taxa in TAS, and a combination of EAC,TAS taxa within MIX consistent with the convergence of both waters. Results highlight the strength of employing larval assemblages as indicators of water masses, particularly in view of the potential effect of climate change on spawning habitats of shelf fishes. [source]


Simulation and quantification of enrichment and retention processes in the southern Benguela upwelling ecosystem

FISHERIES OCEANOGRAPHY, Issue 5 2006
CHRISTOPHE LETT
Abstract Important environmental processes for the survival and recruitment of early life stages of pelagic fishes have been synthesized through Bakun's fundamental triad as enrichment, concentration and retention processes (A. Bakun, 1996, Patterns in the Ocean. Ocean Processes and Marine Population Dynamics. San Diego, CA, USA: University of California Sea Grant). This conceptual framework states that from favourable spawning habitats, eggs and larvae would be transported to and/or retained in places where food originating from enrichment areas would be concentrated. We propose a method for quantifying two of the triad processes, enrichment and retention, based on the Lagrangian tracking of particles transported within water velocity fields generated by a three-dimensional hydrodynamic model. We apply this method to the southern Benguela upwelling ecosystem, constructing putative maps of enrichment and retention. We comment on these maps regarding main features of the circulation in the region, and investigate seasonal variability of the processes. We finally discuss the results in relation to available knowledge on the reproductive strategies of two pelagic clupeoid species abundant in the southern Benguela, anchovy (Engraulis encrasicolus) and sardine (Sardinops sagax). Our approach is intended to be sufficiently generic so as to allow its application to other upwelling systems. [source]


Seasonal maturity development of Baltic cod in different spawning areas: importance of the Arkona Sea for the summer spawning stock

JOURNAL OF APPLIED ICHTHYOLOGY, Issue 1 2009
M. Bleil
Summary We investigated the seasonal maturity development of cod in four areas of the Baltic Sea. Two different spawning peaks were identified and found to be consistent over the period 1992,2005. In the Kiel Bight and Mecklenburg Bight (ICES SD 22) a spawning peak was observed from March to April (spring spawning). In the areas of the Arkona Sea (ICES SD 24) and Bornholm Sea (ICES SD 25) the spawning peak occurred during summer. In the Bornholm Sea, the main spawning activities began in June and ended in September, with a spawning peak in June,August (summer spawning). In the Arkona Sea, which is a transition area between the Mecklenburg Bight and the central Baltic Sea, spawning began in March and lasted until July, with a spawning peak in June,July (summer spawning). Seasonal maturity development and proportions of spawning cod in June in the Arkona Sea were similar to that of the Bornholm Sea. In addition, the proportion of spawning cod in the Arkona Sea was positively correlated with the size of the spawning stock in the Bornholm Sea. Our results provide evidence of a spatial expansion of spawning activities of the summer spawning stock from the eastern Baltic Sea into the Arkona Sea. Therefore, the Arkona Sea should be considered as one of the spawning habitats of the summer spawning stock of Baltic cod. [source]