Home About us Contact | |||
Spatial Scales (spatial + scale)
Kinds of Spatial Scales Selected AbstractsSpatial Scale and the Geography of Tobacco Smoking in New Zealand: A Multilevel PerspectiveNEW ZEALAND GEOGRAPHER, Issue 2 2003GRAHAM MOON ABSTRACT Smoking in New Zealand is more common in deprived areas and in areas with a significant Maori population. Despite its status as a major health problem there has been little work investigating this apparent geography of smoking Data from the 1996 Census is used to construct a multilevel ,proportions-as-responses' model of smoking prevalence. This enables an exploration of the geography of smoking at different spatial scales. Levels within the model distinguish contextual variation between local authorities, census area units and meshblocks. Particular account is taken of the influence of deprivation and ethnicity on smoking. Results confirm the importance of ethnicity and deprivation and indicate that cross-level interaction between meshblock and census area unit measures is significant. They also challenge crude stereotypes about the apparent geography of smoking and suggest that, while levels of smoking may be high in parts of North Island, they are less high than might be expected given the socio-demographic composition of the areas concerned. Conversely, smoking is more prevalent than expected in parts of South Island. The paper notes the health policy implications of these emergent geographies. [source] Effects of Impervious Cover at Multiple Spatial Scales on Coastal Watershed Streams,JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 3 2007Roy Schiff Abstract:, The spatial scale and location of land whose development has the strongest influence on aquatic ecosystems must be known to support land use decisions that protect water resources in urbanizing watersheds. We explored impacts of urbanization on streams in the West River watershed, New Haven, Connecticut, to identify the spatial scale of watershed imperviousness that was most strongly related to water chemistry, macroinvertebrates, and physical habitat. A multiparameter water quality index was used to characterize regional urban nonpoint source pollution levels. We identified a critical level of 5% impervious cover, above which stream health declined. Conditions declined with increasing imperviousness and leveled off in a constant state of impairment at 10%. Instream variables were most correlated (0.77 , |r| , 0.92, p < 0.0125) to total impervious area (TIA) in the 100-m buffer of local contributing areas (,5-km2 drainage area immediately upstream of each study site). Water and habitat quality had a relatively consistent strong relationship with TIA across each of the spatial scales of investigation, whereas macroinvertebrate metrics produced noticeably weaker relationships at the larger scales. Our findings illustrate the need for multiscale watershed management of aquatic ecosystems in small streams flowing through the spatial hierarchies that comprise watersheds with forest-urban land use gradients. [source] What Small Spatial Scales Are Relevant as Electoral Contexts for Individual Voters?AMERICAN JOURNAL OF POLITICAL SCIENCE, Issue 3 2009The Importance of the Household on Turnout at the 2001 General Election For many years, scholars of voting behavior have been thwarted in their attempts to identify micro spatial variations in turnout by data limitations. This has meant that most analyses have been ecological, which has implications for valid inference. Here, for the first time, a hierarchical approach is used to show the relative importance of several micro spatial scales, including the household, on voter participation. The findings highlight the importance of the household context. While those who live together often turn out together, the relative level of clustering within households as opposed to between geographical areas is found to be more important for two-person households compared to other households. Even after taking account of whether individuals are likely to self-select others from similar social backgrounds or with similar political attitudes, there is strong evidence of large and significant household effects on voter participation. [source] Bird Community Composition in a Shaded Coffee Agro-ecological Matrix in Puebla, Mexico: The Effects of Landscape Heterogeneity at Multiple Spatial ScalesBIOTROPICA, Issue 2 2010Eurídice Leyequién ABSTRACT This study examined the importance of habitat heterogeneity on the avian community composition, and investigated the scale at which species abundances respond to habitat variables. The study was conducted within a diverse landscape matrix of a shaded coffee region in Mexico. To detect at which characteristic spatial scale different species and foraging guilds respond most strongly we analyzed the effect of plot-, patch- and landscape-level variables at different spatial extent (i.e., different kilometer radii) on species composition and foraging guilds. We used redundancy analysis to identify species,environment correlations, and to identify predictor variables that best explained the bird community structure, quantified the influence of plot-, patch- and landscape-level variables on the bird community composition. In addition, we used the 4th-corner method to detect significant relationships between the dietary guilds and plot-, patch- and landscape-level variables. We recorded 12,335 individuals of 181 bird species; 105 bird species were recorded foraging within the shaded coffee plantations. We found that plot- and landscape-level variables significantly explained the bird community composition best across all scales, and were significantly correlated with the abundance of the dietary guilds. In contrast, patch-level variables were less important. Habitat composition variables (i.e., coffee, forest and agricultural area) were among the most important predictors. Canopy structure was more important than other vegetation structure variables in explaining dietary guild structure. Hence, the maintenance of a heterogeneous landscape with a high-quality matrix within an agro-ecological region enhances bird conservation. Abstract in Spanish is available at http://www.blackwell-synergy.com/loi/btp [source] Benthic macroinvertebrates in Swedish streams: community structure, taxon richness, and environmental relationsECOGRAPHY, Issue 3 2003Leonard Sandin Spatial scale, e.g. from the stream channel, riparian zone, and catchment to the regional and global scale is currently an important topic in running water management and bioassessment. An increased knowledge of how the biota is affected by human alterations and management measures taken at different spatial scales is critical for improving the ecological quality of running waters. However, more knowledge is needed to better understand the relationship between environmental factors at different spatial scales, assemblage structure and taxon richness of running water organisms. In this study, benthic macroinvertebrate data from 628 randomly selected streams were analysed for geographical and environmental relationships. The dataset also included 100 environmental variables, from local measures such as in-stream substratum and vegetation type, catchment vegetation and land-use, and regional variables such as latitude and longitude. Cluster analysis of the macroinvertebrate data showed a continuous gradient in taxonomic composition among the cluster groups from north to south. Both locally measured variables (e.g. water chemistry, substratum composition) and regional factors (e.g. latitude, longitude, and an ecoregional delineation) were important for explaining the variation in assemblage structure and taxon richness for stream benthic macroinvertebrates. This result is of importance when planning conservation and management measurements, implementing large-scale biomonitoring programs, and predicting how human alterations (e.g. global warming) will affect running water ecosystems. [source] Spatial scale and the diversity of macroinvertebrates in a Neotropical catchmentFRESHWATER BIOLOGY, Issue 2 2010RAPHAEL LIGEIRO Summary 1.,Lotic ecosystems can be studied on several spatial scales, and usually show high heterogeneity at all of them in terms of biological and environmental characteristics. Understanding and predicting the taxonomic composition of biological communities is challenging and compounded by the problem of scale. Additive diversity partitioning is a tool that can show the diversity that occurs at different scales. 2.,We evaluated the spatial distribution of benthic macroinvertebrates in a tropical headwater catchment (S.E. Brazil) during the dry season and compared alpha and beta diversities at the scales of stream segments, reaches, riffles and microhabitats (substratum types: gravels, stones and leaf litter). We used family richness as our estimate of diversity. Sampling was hierarchical, and included three stream segments, two stream reaches per segment, three riffles per reach, three microhabitats per riffle and three Surber sample units per microhabitat. 3.,Classification analysis of the 53 families found revealed groups formed in terms of stream segment and microhabitat, but not in terms of stream reaches and riffles. Separate partition analyses for each microhabitat showed that litter supported lower alpha diversity (28%) than did stones (36%) or gravel (42%). In all cases, alpha diversity at the microhabitat scale was lower than expected under a null model that assumed no aggregation of the fauna. 4.,Beta diversity among patches of the microhabitats in riffles depended on substratum type. It was lower than expected in litter, similar in stone and higher in gravel. Beta diversities among riffles and among reaches were as expected under the null model. On the other hand, beta diversity observed was higher than expected at the scale of stream segments for all microhabitat types. 5., We conclude that efficient diversity inventories should concentrate sampling in different microhabitats and stream sites. In the present study, sampling restricted to stream segments and substratum types (i.e. excluding riffles and stream reaches) would produce around 75% of all observed families using 17% of the sampling effort employed. This finding indicates that intensive sampling (many riffles and reaches) in few stream segments does not result in efficient assessment of diversity in a region. [source] Spatial scale affects bioclimate model projections of climate change impacts on mountain plantsGLOBAL CHANGE BIOLOGY, Issue 5 2008MANDAR R. TRIVEDI Abstract Plant species have responded to recent increases in global temperatures by shifting their geographical ranges poleward and to higher altitudes. Bioclimate models project future range contractions of montane species as suitable climate space shifts uphill. The species,climate relationships underlying such models are calibrated using data at either ,macro' scales (coarse resolution, e.g. 50 km × 50 km, and large spatial extent) or ,local' scales (fine resolution, e.g. 50 m × 50 m, and small spatial extent), but the two approaches have not been compared. This study projected macro (European) and local models for vascular plants at a mountain range in Scotland, UK, under low (+1.7 °C) and high (+3.3 °C) climate change scenarios for the 2080s. Depending on scenario, the local models projected that seven or eight out of 10 focal montane species would lose all suitable climate space at the site. However, the European models projected such a loss for only one species. The cause of this divergence was investigated by cross-scale comparisons of estimated temperatures at montane species' warm range edges. The results indicate that European models overestimated species' thermal tolerances because the input coarse resolution climate data were biased against the cold, high-altitude habitats of montane plants. Although tests at other mountain ranges are required, these results indicate that recent large-scale modelling studies may have overestimated montane species' ability to cope with increasing temperatures, thereby underestimating the potential impacts of climate change. Furthermore, the results suggest that montane species persistence in microclimatic refugia might not be as widespread as previously speculated. [source] Spatial scale of local adaptation in a plant-pathogen metapopulationJOURNAL OF EVOLUTIONARY BIOLOGY, Issue 4 2005A.-L. LAINE Abstract The rate and scale of gene flow can strongly affect patterns of local adaptation in host,parasite interactions. I used data on regional pathogen occurrence to infer the scale of pathogen dispersal and to identify pathogen metapopulations in the interaction between Plantago lanceolata and its specialist phytopathogen, Podosphaera plantaginis. Frequent extinctions and colonizations were recorded in the metapopulations, suggesting substantial gene flow at this spatial scale. The level of pathogen local adaptation was assessed in a laboratory inoculation experiment at three different scales: in sympatric host populations, in sympatric host metapopulations and in allopatric host metapopulations. I found evidence for adaptation to sympatric host populations, as well as evidence indicating that local adaptation may extend to the scale of the sympatric host metapopulation. There was also variation among the metapopulations in the degree of pathogen local adaptation. This may be explained by regional differences in the rate of migration. [source] Spatial scale of GIS-derived categorical variables affects their ability to separate sites by community compositionAPPLIED VEGETATION SCIENCE, Issue 3 2008Emily A. Holt Abstract. Questions: How well do GIS-derived categorical variables (e.g., vegetation, soils, geology, elevation, geography, and physiography) separate plots based on community composition? How does the ability to distinguish plots by community composition vary with spatial scale, specifically number of patch types, patch size and spatial correlation? Both these questions bear on the effective use of stratifying variables in landscape ecology. Location: Arctic tundra; Bering Land Bridge National Preserve, northwestern Alaska, USA. Methods: We evaluated the strength of numerous alternative stratifying variables using the multi-response permutation procedure (MRPP). We also created groups based on lichen community composition, using cluster analyses, and evaluated the relationship between these groups and groupings within categorical variables using Mantel tests. Each test represents different measures of community separation, which were then evaluated with respect to each variable's spatial characteristics. Results: We found each categorical variable derived from GIS separated lichen communities to some degree. Separation success ranged from strong (Alaska Subsections) to weak (Watersheds and Reindeer Ownership). Lichen community groups derived from cluster analysis demonstrated statistically significant relationships with 13 of the 17 categorical variables. Partialling out effects of spatial distance had little effect on these relationships. Conclusions: Greater number of patch types and larger average patch sizes contribute to optimal success in separating lichen communities; geographic distance did not appear to significantly alter separation success. Group distinctiveness or strength increased with more patch types or groups. Alternatively, congruence between lichen community types derived from cluster analysis and the 17 categorical variables was inversely related to patch size and spatial correlation. [source] Species prioritization for monitoring and management in regional multiple species conservation plansDIVERSITY AND DISTRIBUTIONS, Issue 3 2008Helen M. Regan ABSTRACT Successful conservation plans are not solely achieved by acquiring optimally designed reserves. Ongoing monitoring and management of the biodiversity in those reserves is an equally important, but often neglected or poorly executed, part of the conservation process. In this paper we address one of the first and most important steps in designing a monitoring program , deciding what to monitor. We present a strategy for prioritizing species for monitoring and management in multispecies conservation plans. We use existing assessments of threatened status, and the degree and spatial and temporal extent of known threats to link the prioritization of species to the overarching goals and objectives of the conservation plan. We consider both broad and localized spatial scales to capture the regional conservation context and the practicalities of local management and monitoring constraints. Spatial scales that are commensurate with available data are selected. We demonstrate the utility of this strategy through application to a set of 85 plants and animals in an established multispecies conservation plan in San Diego County, California, USA. We use the prioritization to identify the most prominent risk factors and the habitats associated with the most threats to species. The protocol highlighted priorities that had not previously been identified and were not necessarily intuitive without systematic application of the criteria; many high-priority species have received no monitoring attention to date, and lower-priority species have. We recommend that in the absence of clear focal species, monitoring threats in highly impacted habitats may be a way to circumvent the need to monitor all the targeted species. [source] Effects of Forest Management on Amphibians and Reptiles in Missouri Ozark ForestsCONSERVATION BIOLOGY, Issue 1 2004ROCHELLE B. RENKEN Within even-aged management sites, we also focused on the local-scale effects of clearcutting on these species by comparing relative abundance among plots located within clearcut stands, 50 m away from clearcut stands, and 200 m away from clearcut stands. Pretreatment sampling of species abundance occurred from 1992 through 1995, and post-treatment sampling occurred from 1997 through 2000. At the landscape scale, treatment significantly affected the abundance of Bufo americanus. This species declined less on even-aged management sites than on control sites, but the general decline on all sites suggests that other factors may have contributed to this result. Within even-aged management sites, most amphibian species declined and some reptile species increased relative to pretreatment abundances within clearcut stands. We found significant effects of distance from clearcut for two amphibian species, Ambystoma maculatum and Rana clamitans, and two reptile species, Scincella lateralis and Sceloporus undulatus. In general, we conclude that clearcuts within even-aged management sites locally affected amphibian and reptile species but, at a larger spatial scale, we did not detect significant effects of even-aged and uneven-aged forest management. These findings represent relatively short-term data but suggest that forest management and maintenance of biodiversity may be compatible when relatively small amounts of the landscape are disturbed. Resumen:,Como parte del Proyecto Ecosistema del Bosque Ozark de Missouri (PEBOM), evaluamos experimentalmente los impactos de la gestión de bosques sobre la abundancia relativa de anfibios y reptiles en los bosques Ozark, Missouri (E.U.A.). Utilizando sitios de estudio extensos (es decir, de tamaño promedio de 400ha) como la unidad experimental, estudiamos los efectos de tratamientos de manejo de bosques de edad uniforme y dispar comparados con el manejo sin cosecha (es decir, control) sobre la abundancia relativa de 13 especies focales de anfibios y reptiles. En los sitios de manejo de edad uniforme, también analizamos los efectos a escala local de la tala completa sobre estas especies comparando la abundancia relativa entre parcelas localizadas dentro de los claros talados, a 50 m y 200 m de los claros. Para determinar la abundancia de especies, se tomaron muestras previas al tratamiento de 1992 a 1995, y muestras posteriores al tratamiento de 1997 a 2000. A la escala de paisaje, el tratamiento afectó significativamente la abundancia de Bufo americanus. La abundancia de esta especie disminuyó menos en sitios de manejo de edad uniforme que en los sitios control, pero la disminución general en todos los sitios sugiere que otros factores pudieron haber contribuido a este resultado. En los sitios de manejo de edad uniforme, la abundancia de la mayoría de las especies de anfibios disminuyó y algunas especies de reptiles incrementaron en relación con las abundancias previas al tratamiento dentro de los claros talados. Encontramos efectos significativos de la distancia del claro para dos especies de anfibios, Ambystoma maculatum y Rana clamitans, y dos especies de reptiles, Scincella lateralis y Sceloporus undulatus. En general, concluimos que la tala en sitios de edad uniforme afectó localmente a las especies de anfibios y reptiles, pero a una mayor escala espacial, no detectamos impactos significativos entre el manejo de sitios de edad uniforme y dispar. Estos hallazgos representan datos de relativamente corto plazo pero sugieren que la gestión de bosques y el mantenimiento de la biodiversidad pueden ser compatibles cuando se perturban superficies relativamente pequeñas del paisaje. [source] Reorientation by geometric and landmark information in environments of different sizeDEVELOPMENTAL SCIENCE, Issue 5 2005Giorgio Vallortigara It has been found that disoriented children could use geometric information in combination with landmark information to reorient themselves in large but not in small experimental spaces. We tested domestic chicks in the same task and found that they were able to conjoin geometric and nongeometric (landmark) information to reorient themselves in both the large and the small space used. Moreover, chicks reoriented immediately when displaced from a large to a small experimental space and vice versa, suggesting that they used the relative metrics of the environment. However, when tested with a transformation (affine transformation) that alters the geometric relations between the target and the shape of the environment, chicks tended to make more errors based on geometric information when tested in the small than in the large space. These findings suggest that the reliance of the use of geometric information on the spatial scale of the environment is not restricted to the human species. [source] BIODIVERSITY RESEARCH: Conserving macroinvertebrate diversity in headwater streams: the importance of knowing the relative contributions of , and , diversityDIVERSITY AND DISTRIBUTIONS, Issue 5 2010Amber Clarke Abstract Aim, We investigated partitioning of aquatic macroinvertebrate diversity in eight headwater streams to determine the relative contributions of , and , diversity to , diversity, and the scale dependence of , and , components. Location, Great Dividing Range, Victoria, Australia. Methods, We used the method of Jost (Ecology, 2007, 88, 2427,2439) to partition , diversity into its , and , components. We undertook the analyses at both reach and catchment scales to explore whether inferences depended on scale of observation. Results, We hypothesized that , diversity would make a large contribution to the , diversity of macroinvertebrates in our dendritic riverine landscape, particularly at the larger spatial scale (among catchments) because of limited dispersal among sites and especially among catchments. However, reaches each had relatively high taxon richness and high , diversity, while , diversity made only a small contribution to , diversity at both the reach and catchment scales. Main conclusions, Dendritic riverine landscapes have been thought to generate high , diversity as a consequence of limited dispersal and high heterogeneity among individual streams, but this may not hold for all headwater stream systems. Here, , diversity was high and , diversity low, with individual headwater stream reaches each containing a large portion of , diversity. Thus, each stream could be considered to have low irreplaceability since losing the option to use one of these sites in a representative reserve network does not greatly diminish the options available for completing the reserve network. Where limited information on individual taxonomic distributions is available, or time and money for modelling approaches are limited, diversity partitioning may provide a useful ,first-cut' for obtaining information about the irreplaceability of individual streams or subcatchments when establishing representative freshwater reserves. [source] Conversion of sagebrush shrublands to exotic annual grasslands negatively impacts small mammal communitiesDIVERSITY AND DISTRIBUTIONS, Issue 5 2009Steven M. Ostoja Abstract Aim, The exotic annual cheatgrass (Bromus tectorum) is fast replacing sagebrush (Artemisia tridentata) communities throughout the Great Basin Desert and nearby regions in the Western United States, impacting native plant communities and altering fire regimes, which contributes to the long-term persistence of this weedy species. The effect of this conversion on native faunal communities remains largely unexamined. We assess the impact of conversion from native perennial to exotic annual plant communities on desert rodent communities. Location, Wyoming big sagebrush shrublands and nearby sites previously converted to cheatgrass-dominated annual grasslands in the Great Basin Desert, Utah, USA. Methods, At two sites in Tooele County, Utah, USA, we investigated with Sherman live trapping whether intact sagebrush vegetation and nearby converted Bromus tectorum -dominated vegetation differed in rodent abundance, diversity and community composition. Results, Rodent abundance and species richness were considerably greater in sagebrush plots than in cheatgrass-dominated plots. Nine species were captured in sagebrush plots; five of these were also trapped in cheatgrass plots, all at lower abundances than in the sagebrush. In contrast, cheatgrass-dominated plots had no species that were not found in sagebrush. In addition, the site that had been converted to cheatgrass longer had lower abundances of rodents than the site more recently converted to cheatgrass-dominated plots. Despite large differences in abundances and species richness, Simpson's D diversity and Shannon-Wiener diversity and Brillouin evenness indices did not differ between sagebrush and cheatgrass-dominated plots. Main conclusions, This survey of rodent communities in native sagebrush and in converted cheatgrass-dominated vegetation suggests that the abundances and community composition of rodents may be shifting, potentially at the larger spatial scale of the entire Great Basin, where cheatgrass continues to invade and dominate more landscape at a rapid rate. [source] Phylogenetic relatedness and plant invader success across two spatial scalesDIVERSITY AND DISTRIBUTIONS, Issue 3 2009Marc W. Cadotte ABSTRACT Aim, Successful invaders often possess similar ecological traits that contribute to success in new regions, and thus under niche conservatism, invader success should be phylogenetically clustered. We asked if the degree to which non-native plant species are phylogenetically related is a predictor of invasion success at two spatial scales. Location, Australia , the whole continent and Royal National Park (south-eastern Australia). Methods, We used non-native plant species occupancy in Royal National Park, as well as estimated continental occupancy of these species from herbarium records. We then estimated phylogenetic relationships using molecular data from three gene sequences available on GenBank (matK, rbcL and ITS1). We tested for phylogenetic signals in occupancy using Blomberg's K. Results, Whereas most non-native plants were relatively scarce, there was a strong phylogenetic signal for continental occupancy, driven by the clustering of successful species in Asteraceae, Caryophyllaceae, Poaceae and Solanaceae. However, we failed to detect a phylogenetic signal at the park scale. Main Conclusions, Our results reveal that at a large spatial scale, invader success is phylogenetically clustered where ecological traits promoting success appear to be shared among close relatives, indicating that phylogenetic relationships can be useful predictors of invasion success at large spatial scales. At a smaller, landscape scale, there was no evidence of phylogenetic clustering of invasion success, and thus, relatedness plays a much reduced role in determining the relative success of invaders. [source] Scale dependence of effective specialization: its analysis and implications for estimates of global insect species richnessDIVERSITY AND DISTRIBUTIONS, Issue 1 2007Jon C. Gering ABSTRACT Estimates of global insect species richness are sometimes based on effective specialization, a calculation used to estimate the number of insect species that is restricted to a particular tree species. Yet it is not clear how effective specialization is influenced by spatial scale or characteristics of the insect community itself (e.g. species richness). We investigated scale dependence and community predictors of effective specialization using 15,907 beetles (583 species) collected by insecticide fogging from the crowns of 96 trees (including 32 Quercus trees) located in Ohio and Indiana. Trees were distributed across 24 forest stands (,1 ha) nested within six sites (,10,100 km2) and two ecoregions (> 1000 km2). Using paired-sample randomization tests, we found that effective specialization (fk) exhibited negative scale-dependence in early (May,June 2000) and late (August,September 2000) sampling periods. Our average effective specialization (F) values , those that are comparable to Erwin's (1982) estimates , ranged from 19% to 97%, and increased as spatial scale decreased. We also found that beetle species richness and the number of shared beetle species across host trees were significant and consistent negative predictors of F. This shows that increases in spatial scale, species richness, and the number of trees (and/or tree species) all coincide with decreases in effective specialization. Collectively, our results indicate that estimates of global insect species richness based on effective specialization at a single spatial scale are overestimating the magnitude of global insect species richness. We propose that scale dependence should be promoted to a central concept in the research program on global estimates of species richness. [source] Diversity and composition of Arctiidae moth ensembles along a successional gradient in the Ecuadorian AndesDIVERSITY AND DISTRIBUTIONS, Issue 5 2005Nadine Hilt ABSTRACT Andean montane rain forests are among the most species-rich terrestrial habitats. Little is known about their insect communities and how these respond to anthropogenic habitat alteration. We investigated exceptionally speciose ensembles of nocturnal tiger moths (Arctiidae) at 15 anthropogenically disturbed sites, which together depict a gradient of forest recovery and six closed-forest understorey sites in southern Ecuador. At weak light traps we sampled 9211 arctiids, representing 287 species. Arctiid abundance and diversity were highest at advanced succession sites, where secondary scrub or young forest had re-established, followed by early succession sites, and were lowest, but still high, in mature forest understorey. The proportion of rare species showed the reverse pattern. We ordinated moth samples by non-metric multidimensional scaling using the chord-normalized expected species shared index (CNESS) index at various levels of the sample size parameter m. A distinct segregation of arctiid ensembles at succession sites from those in mature forest consistently emerged only at high m -values. Segregation between ensembles of early vs. late succession stages was also clear at high m values only, and was rather weak. Rare species were responsible for much of the faunal difference along the succession gradient, whereas many common arctiid species occurred in all sites. Matrix correlation tests as well as exploration of relationships between ordination axes and environmental variables revealed the degree of habitat openness, and to a lesser extent, elevation, as best predictors of faunal dissimilarity. Faunal differences were not related to geographical distances between sampling sites. Our results suggest that many of the more common tiger moths of Neotropical montane forests have a substantial recolonization potential at the small spatial scale of our study and accordingly occur also in landscape mosaics surrounding nature reserves. These species contribute to the unexpectedly high diversity of arctiid ensembles at disturbed sites, whereas the proportion of rare species declines outside mature forest. [source] Soil detachment and transport on field- and laboratory-scale interrill areas: erosion processes and the size-selectivity of eroded sedimentEARTH SURFACE PROCESSES AND LANDFORMS, Issue 8 2006O. Malam Issa Abstract Field- and laboratory-scale rainfall simulation experiments were carried out in an investigation of the temporal variability of erosion processes on interrill areas, and the effects of such variation upon sediment size characteristics. Poorly aggregated sandy soils from the semi-arid environment of Senegal, West Africa, were used on both a 40 m2 field plot and a 0·25 m2 laboratory plot; rainfall intensity for all experiments was 70 mm h,1 with a duration of 1 to 2 hours. Time-series measurements were made of the quantity and the size distribution of eroded material: these permitted an estimate of the changing temporal balance between the main erosion processes (splash and wash). Results from both spatial scales showed a similar temporal pattern of runoff generation and sediment concentration. For both spatial scales, the dominant erosional process was detachment by raindrops; this resulted in a dynamic evolution of the soil surface under raindrop impact, with the rapid formation of a sieving crust followed by an erosion crust. However, a clear difference was observed between the two scales regarding the size of particles detached by both splash and wash. While all measured values were lower than the mean weight diameter (MWD) value of the original soil (mean 0·32 mm), demonstrating the size-selective nature of wash and splash processes, the MWD values of washed and splashed particles at the field scale ranged from 0·08 to 0·16 mm and from 0·12 to 0·30 mm respectively, whereas the MWD values of washed and splashed particles at the laboratory scale ranged from 0·13 to 0·29 mm and from 0·21 to 0·32 mm respectively. Thus only at the field scale were the soil particles detached by splash notably coarser than those transported by wash. This suggests a transport-limited erosion process at the field scale. Differences were also observed between the dynamics of the soil loss by wash at the two scales, since results showed wider scatter in the field compared to the laboratory experiments. This scatter is probably related to the change in soil surface characteristics due to the size-selectivity of the erosion processes at this spatial scale. Copyright © 2006 John Wiley & Sons, Ltd. [source] Estimation of erosion and deposition volumes in a large, gravel-bed, braided river using synoptic remote sensingEARTH SURFACE PROCESSES AND LANDFORMS, Issue 3 2003Stuart N. Lane Abstract System-scale detection of erosion and deposition is crucial in order to assess the transferability of findings from scaled laboratory and small field studies to larger spatial scales. Increasingly, synoptic remote sensing has the potential to provide the necessary data. In this paper, we develop a methodology for channel change detection, coupled to the use of synoptic remote sensing, for erosion and deposition estimation, and apply it to a wide, braided, gravel-bed river. This is based upon construction of digital elevation models (DEMs) using digital photogrammetry, laser altimetry and image processing. DEMs of difference were constructed by subtracting DEM pairs, and a method for propagating error into the DEMs of difference was used under the assumption that each elevation in each surface contains error that is random, independent and Gaussian. Data were acquired for the braided Waimakariri River, South Island, New Zealand. The DEMs had a 1·0 m pixel resolution and covered an area of riverbed that is more than 1 km wide and 3·3 km long. Application of the method showed the need to use survey-specific estimates of point precision, as project design and manufacturer estimates of precision overestimate a priori point quality. This finding aside, the analysis showed that even after propagation of error it was possible to obtain high quality DEMs of difference for process estimation, over a spatial scale that has not previously been achieved. In particular, there was no difference in the ability to detect erosion and deposition. The estimates of volumes of change, despite being downgraded as compared with traditional cross-section survey in terms of point precision, produced more reliable erosion and deposition estimates as a result of the large improvement in spatial density that synoptic methods provide. Copyright © 2003 John Wiley & Sons, Ltd. [source] Spatial pattern of adult trees and the mammal-generated seed rain in the Iberian pearECOGRAPHY, Issue 3 2010Jose M. Fedriani The degree to which plant individuals are aggregated or dispersed co-determines how a species uses resources, how it is used as a resource, and how it reproduces. Quantifying such spatial patterns, however, presents several methodological issues that can be overcome by using spatial point pattern analyses (SPPA). We used SPPA to assess the distribution of P. bourgaeana adult trees and their seeds (within fecal samples) dispersed by three mammals (badger, fox, and wild boar) within a 72-ha plot across a range of spatial scales. Pyrus bourgaeana trees in our study plot (n=75) were clearly aggregated with a critical spatial scale of ca 25,m, and approximately nine randomly distributed tree clusters were identified. As expected from their marking behaviors, the spatial patterns of fecal deposition varied widely among mammal species. Whereas badger feces and dispersed seeds were clearly clustered at small spatial scales (<10,m), boar and fox feces were relatively scattered across the plot. A toroidal shift null model testing for independence indicated that boars tended to deliver seeds to the vicinity of adult trees and thus could contribute to the maintenance and enlargement of existing tree clusters. Badgers delivered feces and seeds in a highly clumped pattern but unlike boars, away from P. bourgaeana neighborhoods; thus, they are more likely to create new tree clusters than boars. The strong tree aggregation is likely to be the result of one or several non-exclusive processes, such as the spatial patterning of seed delivery by dispersers and seedling establishment beneath mother trees. In turn, the distinctive distribution of P. bourgaeana in Doñana appeared to interact with the foraging behavior of its mammalian seed dispersers, leading to neighbourhood-specific dispersal patterns and fruit-removal rates. Our study exemplifies how a detailed description of patterns generates testable hypotheses concerning the ecology of zoochorous. Pyrus bourgaeana dispersers were unique and complementary in their spatial patterning of seed delivery, which likely confers resilience to their overall service and suggests lack of redundancy and expendability of any one species. [source] Spatiotemporal patterns of seed dispersal in a wind-dispersed Mediterranean tree (Acer opalus subsp. granatense): implications for regenerationECOGRAPHY, Issue 1 2007Lorena Gómez-Aparicio Seed dispersal can severely limit the quantity of plant recruits and their spatial distribution. However, our understanding of the role of dispersal in regeneration dynamics is limited by the lack of knowledge of seed deposition patterns in space and time. In this paper, we analyse the spatiotemporal variability of seed dispersal patterns in the Mediterranean maple, Acer opalus subsp. granatense, by monitoring seed rain along two years at a broad spatial scale (2 mountain ranges, 2 populations per range, 4 microhabitats per population). We quantified seed limitation and its components (source and dispersal limitation), and explored dispersal limitation in space by analysing dispersal distances, seed aggregation, and microhabitat seed distribution. Acer opalus subsp. granatense was strongly seed-limited throughout the gradients explored, being always dispersal limitation much higher than source limitation. The distribution of seeds with distance from adult individuals was leptokurtic and right-skewed in all populations, being both kurtosis and skewness higher the year of the highest seed production. Dispersal distances were shorter than expected by random in the four populations, which suggests distance-limited dispersal. Dispersal patterns were highly aggregated and showed a preferential direction around adults. At the microhabitat scale, most seeds accumulated under adult maples. However, there were no more seeds under trees and shrubs other than maple than in open interspaces, implying that established vegetation does not disrupt patterns of seed deposition by physically trapping seeds. When compared with patterns of seedling establishment, limited dispersal ability and inter-annual spatial concordance in seed rain patterns suggest that several potentially safe sites for recruitment have a very low probability of receiving seeds in most maple populations. These findings are especially relevant for rare species such as Acer opalus subsp. granatense, and illustrate how dispersal studies are not only crucial for our understanding of plant population dynamics but also to provide conservation directions. [source] Opposite shell-coiling morphs of the tropical land snail Amphidromus martensi show no spatial-scale effectsECOGRAPHY, Issue 4 2006Paul G. Craze Much can be learned about evolution from the identification of those factors maintaining polymorphisms in natural populations. One polymorphism that is only partially understood occurs in land snail species where individuals may coil clockwise or anti-clockwise. Theory shows that polymorphism in coiling direction should not persist yet species in several unrelated groups of land snails occur in stably polymorphic populations. A solution to this paradox may advance our understanding of evolution in general. Here, we examine two possible explanations: firstly, negative frequency-dependent selection due to predation; secondly, random fixation of alternative coiling morphs in tree-sized demes, giving the impression of wider polymorphism. We test these hypotheses by investigating morph-clustering of empty shells at two spatial scales in Amphidromus martensi populations in northern Borneo: the spatial structure of snail populations is relatively easy to estimate and this information may support one or other of the hypotheses under test. For the smaller scale we make novel use of a statistic previously used in botanical studies (the K-function statistic), which allows clustering of more than one morph to be simultaneously investigated at a range of scales and which we have corrected for anisotropy. We believe this method could be of more general use to ecologists. The results show that consistent clustering or separation of morphs cannot be clearly detected at any spatial scale and that predation is not frequency-dependent. Alternative explanations that do not require strong spatial structuring of the population may be needed, for instance ones involving a mechanism of selection actively maintaining the polymorphism. [source] Distribution, abundance, and individual strategies: a multi-scale analysis of dasyurid marsupials in arid central AustraliaECOGRAPHY, Issue 3 2006Adele S. Haythornthwaite We investigated the effects of different environmental factors on the distribution and abundance of 6 species of dasyurid marsupials using a multiple-scale analysis. Data collected in the spinifex dunefields of the Simpson Desert, Australia, were analysed at 3 spatial scales spanning more than 5 orders of magnitude: "metasite" (covering an area of 1000,2000 km2), site (2,12 km2) and grid (0.01 km2). Temporal variability was also investigated, using data collected in March, April, and May in 4 consecutive years from 1997 to 2000. Both abiotic and biotic factors influenced the capture rates of different species at different times and spatial scales. At the coarsest spatial scale, Dasycercus cristicauda (mulgara) was consistently limited in its distribution by the intensity of rainfall, probably as an indirect result of increased grazing pressure from pastoral activity and a higher density of feral predators in high rainfall areas. However, at the finest spatial scale, this partly carnivorous species was scarce in areas of dense spinifex, perhaps because such habitats yield lowest returns during foraging, and was more common in areas where small invertebrate prey were abundant. Factors affecting the distribution of the most abundant dasyurid species in the study area, Sminthopsis youngsoni (lesser hairy-footed dunnart), could not be identified at any scale; we conclude that this reflects the opportunistic foraging strategies and flexible habitat requirements of this insectivorous species. Both Ningaui ridei (wongai ningaui) and Sminthopsis hirtipes (hairy-footed dunnart) were less abundant throughout the study region. For N. ridei, a spinifex specialist, predictors of occurrence could be identified only at the finest scale of analysis; at the grid level, a close positive association was detected in 2 of the 4 study years between capture rate and spinifex cover. For S. hirtipes, all 3 levels of spatial analysis revealed a negative association between capture rate and both rainfall and spinifex density. For the rarely-caught S. crassicaudata (fat-tailed dunnart) and Planigale tenuirostris (narrow-nosed planigale), no clear results were obtained at any spatial scale, and we interpret this to indicate that the study region represents sub-optimal habitat for these species. Given that different factors affected the distribution and abundance of dasyurids at different spatial scales over time, we conclude that a multiple-scale approach to population and community analysis is vital to accurately identify which environmental processes shape population and community dynamics. Understanding the interplay between regional and local processes will be crucial for management of existing species populations and for prediction of their distributions and abundances in future. [source] The significance of geographic range size for spatial diversity patterns in Neotropical palmsECOGRAPHY, Issue 1 2006Holger Kreft We examined the effect of range size in commonly applied macroecological analyses using continental distribution data for all 550 Neotropical palm species (Arecaceae) at varying grain sizes from 0.5° to 5°. First, we evaluated the relative contribution of range-restricted and widespread species on the patterns of species richness and endemism. Second, we analysed the impact of range size on the predictive value of commonly used predictor variables. Species sequences were produced arranging species according to their range size in ascending, descending, and random order. Correlations between the cumulative species richness patterns of these sequences and environmental predictors were performed in order to analyse the effect of range size. Despite the high proportion of rare species, patterns of species richness were found to be dominated by a minority of widespread species (,20%) which contained 80% of the spatial information. Climatic factors related to energy and water availability and productivity accounted for much of the spatial variation of species richness of widespread species. In contrast, species richness of range-restricted species was to a larger extent determined by topographical complexity. However, this effect was much more difficult to detect due to a dominant influence of widespread species. Although the strength of different environmental predictors changed with spatial scale, the general patterns and trends proved to be relatively stabile at the examined grain sizes. Our results highlight the difficulties to approximate causal explanations for the occurrence of a majority of species and to distinguish between contemporary climatic factors and history. [source] Modelling species distributions in Britain: a hierarchical integration of climate and land-cover dataECOGRAPHY, Issue 3 2004Richard G. Pearson A modelling framework for studying the combined effects of climate and land-cover changes on the distribution of species is presented. The model integrates land-cover data into a correlative bioclimatic model in a scale-dependent hierarchical manner, whereby Artificial Neural Networks are used to characterise species' climatic requirements at the European scale and land-cover requirements at the British scale. The model has been tested against an alternative non-hierarchical approach and has been applied to four plant species in Britain: Rhynchospora alba, Erica tetralix, Salix herbacea and Geranium sylvaticum. Predictive performance has been evaluated using Cohen's Kappa statistic and the area under the Receiver Operating Characteristic curve, and a novel approach to identifying thresholds of occurrence which utilises three levels of confidence has been applied. Results demonstrate reasonable to good predictive performance for each species, with the main patterns of distribution simulated at both 10 km and 1 km resolutions. The incorporation of land-cover data was found to significantly improve purely climate-driven predictions for R. alba and E. tetralix, enabling regions with suitable climate but unsuitable land-cover to be identified. The study thus provides an insight into the roles of climate and land-cover as determinants of species' distributions and it is demonstrated that the modelling approach presented can provide a useful framework for making predictions of distributions under scenarios of changing climate and land-cover type. The paper confirms the potential utility of multi-scale approaches for understanding environmental limitations to species' distributions, and demonstrates that the search for environmental correlates with species' distributions must be addressed at an appropriate spatial scale. Our study contributes to the mounting evidence that hierarchical schemes are characteristic of ecological systems. [source] Landscape issues in plant ecologyECOGRAPHY, Issue 2 2002Sylvie De Blois In the last decade, we have seen the emergence and consolidation of a conceptual framework that recognizes the landscape as an ecological unit of interest. Plant ecologists have long emphasized landscape-scale issues, but there has been no recent attempt to define how landscape concepts are now integrated in vegetation studies. To help define common research paradigms in both landscape and plant ecology, we discuss issues related to three main landscape concepts in vegetation researches, reviewing theoretical influences and emphasizing recent developments. We first focus on environmental relationships, documenting how vegetation patterns emerge from the influence of local abiotic conditions. The landscape is the physical environment. Disturbances are then considered, with a particular attention to human-driven processes that often overrule natural dynamics. The landscape is a dynamic space. As environmental and historical processes generate heterogeneous patterns, we finally move on to stress current evidence relating spatial structure and vegetation dynamics. This relates to the concept of a landscape as a patch-corridor-matrix mosaic. Future challenges involve: 1) the capacity to evaluate the relative importance of multiple controlling processes at broad spatial scale; 2) better assessment of the real importance of the spatial configuration of landscape elements for plant species and finally; 3) the integration of natural and cultural processes and the recognition of their interdependence in relation to vegetation management issues in human landscapes. [source] Macroecology of a host-parasite relationshipECOGRAPHY, Issue 1 2000Caryn C. Vaughn The larvae of freshwater mussels are obligate ectoparasites on fishes while adults are sedentary and benthic. Dispersal of mussels is dependent on the movement of fish hosts, a regional process, but growth and reproduction should be governed by local processes. Thus, mussel assemblage attributes should be predictable from the regional distribution and abundance of fishes. At a broad spatial scale in the Red River drainage, USA, mussel species richness and fish species richness were positively associated; maximum mussel richness was limited by fish richness, but was variable beneath that constraint. Measured environmental variables and the associated local fish assemblages each significantly accounted for the regional variation in mussel assemblages. Furthermore, mussel assemblages showed strong spatial autocorrelation. Variation partitioning revealed that pure fish effects accounted for 15.4% of the variation in mussel assemblages; pure spatial and environmental effects accounted for 16.1% and 7.8%, respectively. Shared variation among fish, space and environmental variables totaled 40%. Of this shared variation, 36.8% was associated with the fish matrix. Thus, the variation in mussel assemblages that was associated with the distribution and abundance of fishes was substantial (> 50%), indicating that fish community structure is an important determinant of mussel community structure. Although animals commonly disperse plants and, thus, influence the structure of plant communities, our results show a strong macroecological association between two disparate animal groups with one strongly affecting the assemblage structure of the other. [source] Density, dispersal, and feeding impact of western flower thrips (Thysanoptera: Thripidae) on flowering chrysanthemum at different spatial scalesECOLOGICAL ENTOMOLOGY, Issue 1 2005Marc Rhainds Abstract., 1. This study evaluated the effect of dispersal on the density and feeding impact of a phytophagous insect in relation to the spatial distribution of its host plants. 2. The interaction between density, dispersal, and feeding impact of western flower thrips on flowering chrysanthemum was quantified at three spatial scales, with infested and uninfested plants either isolated in 0.25 m2 individual cages, or enclosed together in 2.25 m2 communal cages or 75 m2 greenhouses. 3. In individual cages, the rate of dispersal from chrysanthemum plants to blue sticky traps increased with the density of thrips for females but not males. Uninfested plants consistently had fewer thrips when they were individually caged rather than enclosed with plants infested with adults, indicating that dispersal mediates inter-plant distribution of thrips. 4. The feeding impact of thrips on inflorescences was evaluated using the absorbance of ethanol extracts at wavelengths characteristic of yellow carotenoid pigments associated with chrysanthemum inflorescences (415, 445, and 472 nm). Increasing absorbance of extracts with increasing density of thrips per inflorescence suggests that feeding by thrips results in ruptured cells leaching carotenoid pigments. 5. In communal cages, the distribution of thrips was uniform for infested and uninfested plants, whereas the density and feeding impact of thrips in greenhouses were higher for infested than uninfested plants. These results suggest that short-range dispersal by adults homogenises the density and feeding impact of thrips among host plants only on a small spatial scale. [source] Measuring dispersal and detecting departures from a random walk model in a grasshopper hybrid zoneECOLOGICAL ENTOMOLOGY, Issue 2 2003R. I. Bailey Abstract. 1. The grasshopper species Chorthippus brunneus and C. jacobsi form a complex mosaic hybrid zone in northern Spain. Two mark,release,recapture studies were carried out near the centre of the zone in order to make direct estimates of lifetime dispersal. 2. A model framework based on a simple random walk in homogeneous habitat was extended to include the estimation of philopatry and flying propensity. Each model was compared with the real data, correcting for spatial and temporal biases in the data sets. 3. All four data sets (males and females at each site) deviated significantly from a random walk. Three of the data sets showed strong philopatry and three had a long dispersal tail, indicating a low propensity to move further than predicted by the random walk model. 4. Neighbourhood size estimates were 76 and 227 for the two sites. These estimates may underestimate effective population size, which could be increased by the long tail to the dispersal function. The random walk model overestimates lifetime dispersal and hence the minimum spatial scale of adaptation. 5. Best estimates of lifetime dispersal distance of 7,33 m per generation were considerably lower than a previous indirect estimate of 1344 m per generation. This discrepancy could be influenced by prezygotic isolation, an inherent by-product of mosaic hybrid zone structure. [source] Linking dispersal, immigration and scale in the neutral theory of biodiversityECOLOGY LETTERS, Issue 12 2009Ryan A. Chisholm Abstract In the classic spatially implicit formulation of Hubbell's neutral theory of biodiversity a local community receives immigrants from a metacommunity operating on a relatively slow timescale, and dispersal into the local community is governed by an immigration parameter m. A current problem with neutral theory is that m lacks a clear biological interpretation. Here, we derive analytical expressions that relate the immigration parameter m to the geometry of the plot defining the local community and the parameters of a dispersal kernel. Our results facilitate more rigorous and extensive tests of the neutral theory: we conduct a test of neutral theory by comparing estimates of m derived from fits to empirical species abundance distributions to those derived from dispersal kernels and find acceptable correspondence; and we generate a new prediction of neutral theory by investigating how the shapes of species abundance distributions change theoretically as the spatial scale of observation changes. We also discuss how our main analytical results can be used to assess the error in the mean-field approximations associated with spatially implicit formulations of neutral theory. Ecology Letters (2009) 12: 1385,1393 [source] |