Home About us Contact | |||
Spatial Pattern Analysis (spatial + pattern_analysis)
Selected AbstractsSpatial analysis of an invasion front of Acer platanoides: dynamic inferences from static dataECOGRAPHY, Issue 3 2005Wei Fang It is an open question whether the invading tree species Acer platanoides is invading and displacing native trees within pre-existing forest stands, or merely preferentially occupying new stands of secondary forest growth at the edges of existing forests. Several threads of spatial pattern analyses were used to assess the invasibility of A. platanoides, and to link the invasion to the structure of a plant community in the deciduous forest of the northeastern United States. The analyses were based on maps of a contiguous 100×50 m area along an A. platanoides infestation gradient. The distribution of A. platanoides was highly aggregated and the population importance value increased from 28.1 to 38.5% according to mortality estimated from standing dead trees, while the distribution of native tree species was close to random and importance value of Quercus spp. decreased from 33.4 to 26.9% over time. The size distributions of each tree species across distance indicated that A. platanoides was progressively invading the interior of the forest while the native species (including A. rubrum) were not spreading back towards the A. platanoides monospecific patch. The null hypothesis of no invasibility was rejected based on quantile regressions. There were negative correlations between A. platanoides density and the densities of native species in different functional groups, and negative correlation of A. platanoides density and the species diversity in forest understory. The null hypothesis that A. platanoides invasion did not suppress native trees or understory was rejected based on Dutilleul's modified t-test for correlation, consistent with experimental results in the same study site. The combination of multiple spatial analyses of static data can be used to infer historical dynamical processes that shape a plant community structure. The concept of "envelop effects" was discussed and further developed. [source] Multigenerational analysis of spatial structure in the terrestrial, food-deceptive orchid Orchis masculaJOURNAL OF ECOLOGY, Issue 2 2009Hans Jacquemyn Summary 1In long-lived, terrestrial orchids, strong aggregation of adults and recruits within populations and pronounced spatial association between recruits and adults can be expected when seed dispersal is limited, probabilities of seed germination decrease with increasing distance from mother plants and/or not all mother plants contribute to future generations. When individuals are distributed evenly across life-history stages, these processes can also be expected to result in a significant fine-scale spatial genetic structure in recruits that will persist into the adult-stage class. 2We combined detailed spatial genetic and point pattern analyses across different generations with parentage analyses to elucidate the role of the diverse processes that might determine spatial structure in Orchis mascula. 3Analyses of spatial point patterns showed a significant association between adults and recruits and similar clustering patterns for both. Weak, but highly significant spatial genetic structure was observed in adults and recruits, but no significant differences were observed across life stages, indicating that the spatial genetic structure present in recruits persists into the adult stage. 4Parentage analyses highlighted relatively short seed dispersal distances (median offspring-recruitment distance: 1.55 and 1.70 m) and differential contribution of mother plants to future generations. 5Persistence of fine-scale spatial genetic structure from seedlings into the adult stage class is consistent with the life history of O. mascula, whereas relatively large dispersal distances of both pollen and seeds compared to the fine-scale clustering of adults and seedlings suggest overlapping seed shadows and mixing of genotypes within populations as the major factors explaining the observed weak spatial genetic structure. 6Nonetheless, comparison of the spatial association between recruits and adults with the genetic analysis of offspring-parent distances suggests that the tight clustering of recruits around adults was probably caused by decreasing probabilities of seed germination with increasing distance from mother plants. 7Synthesis. This study shows that the approach presented here, which combines spatial genetic and spatial pattern analyses with parentage analyses, may be broadly applied to other plant species to elucidate the processes that determine spatial structure within their populations. [source] Cellular patterns in the inner retina of adult zebrafish: Quantitative analyses and a computational model of their formationTHE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 1 2004David A. Cameron Abstract The mechanisms that control cellular pattern formation in the growing vertebrate central nervous system are poorly understood. In an effort to reveal mechanistic rules of cellular pattern formation in the central nervous system, quantitative spatial analysis and computational modeling techniques were applied to cellular patterns in the inner retina of the adult zebrafish. All the analyzed cell types were arrayed in nonrandom patterns tending toward regularity; specifically, they were locally anticlustered. Over relatively large spatial scales, only one cell type exhibited consistent evidence for pattern regularity, suggesting that cellular pattern formation in the inner retina is dominated by local anticlustering mechanisms. Cross-correlation analyses revealed independence between the patterns of different cell types, suggesting that cellular pattern formation may involve multiple, independent, homotypic anticlustering mechanisms. A computational model of cellular pattern formation in the growing zebrafish retina was developed, which featured an inhibitory, homotypic signaling mechanism, arising from differentiated cells, that controlled the spatial profile of cell fate decisions. By adjusting the spatial profile of this decaying-exponential signal, the model provided good estimates of all the cellular patterns that were observed in vivo, as objectively judged by quantitative spatial pattern analyses. The results support the hypothesis that cellular pattern formation in the inner retina of zebrafish is dominated by a set of anticlustering mechanisms that may control events at, or near, the spatiotemporal point of cell fate decision. J. Comp. Neurol. 471:11,25, 2004. © 2004 Wiley-Liss, Inc. [source] Local Indicators of Network-Constrained Clusters in Spatial Point PatternsGEOGRAPHICAL ANALYSIS, Issue 3 2007Ikuho Yamada The detection of clustering in a spatial phenomenon of interest is an important issue in spatial pattern analysis. While traditional methods mostly rely on the planar space assumption, many spatial phenomena defy the logic of this assumption. For instance, certain spatial phenomena related to human activities are inherently constrained by a transportation network because of our strong dependence on the transportation system. This article thus introduces an exploratory spatial data analysis method named local indicators of network-constrained clusters (LINCS), for detecting local-scale clustering in a spatial phenomenon that is constrained by a network space. The LINCS method presented here applies to a set of point events distributed over the network space. It is based on the network K -function, which is designed to determine whether an event distribution has a significant clustering tendency with respect to the network space. First, an incremental K -function is developed so as to identify cluster size more explicitly than the original K -function does. Second, to enable identification of cluster locations, a local K -function is derived by decomposing and modifying the original network K -function. The local K -function LINCS, which is referred to as KLINCS, is tested on the distribution of 1997 highway vehicle crashes in the Buffalo, NY area. Also discussed is an adjustment of the KLINCS method for the nonuniformity of the population at risk over the network. As traffic volume can be seen as a surrogate of the population exposed to a risk of vehicle crashes, the spatial distribution of vehicle crashes is examined in relation to that of traffic volumes on the network. The results of the KLINCS analysis are validated through a comparison with priority investigation locations (PILs) designated by the New York State Department of Transportation. [source] Can isotropy vs. anisotropy in the spatial association of plant species reveal physical vs. biotic facilitation?JOURNAL OF VEGETATION SCIENCE, Issue 1 2001Peter Haase In dryland ecosystems and other harsh environments, a large part of the vegetation is often clustered, appearing as ,islands'. If ,independent' species, usually colonizers, can be distinguished from species which are ,dependent' on the presence of the colonizing species for successful establishment and/or persistence, the type of spatial pattern of the association - isotropic (spatially symmetric) or anisotropic (spatially asymmetric) - can give information on the underlying environmental factors driving the process of association. Modified spatial pattern analysis based on Ripley's K -function can be applied to bivariate clustered patterns by cardinal direction in order to detect possible anisotropy in the pattern of association. The method was applied to mapped distribution patterns of two types of semi-arid shrubland in southeastern Spain. In shrubland of Retama sphaerocarpa, low shrubs of Artemisia barrelieri were significantly clustered under the canopy of the Retama shrubs in all four cardinal directions, suggesting an isotropic facilitation effect. In low shrubland dominated by Anthyllis cytisoides and Artemisia barrelieri, Anthyllis shrubs occurred more frequently than expected on the eastern side (and downslope) of an Artemisia shrub. The possible environmental factors driving the two association patterns are discussed and recommendations for further applications of the analytical method are given. [source] What does the study of the spatial patterns of pathological lesions tell us about the pathogenesis of neurodegenerative disorders?NEUROPATHOLOGY, Issue 1 2001Richard A Armstrong Discrete pathological lesions, which include extracellular protein deposits, intracellular inclusions and changes in cell morphology, occur in the brain in the majority of neurodegenerative disorders. These lesions are not randomly distributed in the brain but exhibit a spatial pattern, that is, a departure from randomness towards regularity or clustering. The spatial pattern of a lesion may reflect pathological processes affecting particular neuroanatomical structures and, therefore, studies of spatial pattern may help to elucidate the pathogenesis of a lesion and of the disorders themselves. The present article reviews first, the statistical methods used to detect spatial patterns and second, the types of spatial patterns exhibited by pathological lesions in a variety of disorders which include Alzheimer's disease, Down syndrome, dementia with Lewy bodies, Creutzfeldt,Jakob disease, Pick's disease and corticobasal degeneration. These studies suggest that despite the morphological and molecular diversity of brain lesions, they often exhibit a common type of spatial pattern (i.e. aggregation into clusters that are regularly distributed in the tissue). The pathogenic implications of spatial pattern analysis are discussed with reference to the individual disorders and to studies of neurodegeneration as a whole. [source] Release of Juniperus thurifera woodlands from herbivore-mediated arrested succession in SpainAPPLIED VEGETATION SCIENCE, Issue 1 2010Lucía DeSoto Abstract Question: Do abiotic constraints maintain monospecific woodlands of Juniperus thurifera? What is the role of biotic (livestock) versus abiotic (climate) drivers in the recruitment and growth of the different tree species? Location: Cabrejas range, Soria, north-central Spain, 1200 m altitude. Methods: Stand history was reconstructed using dendro-ecology and spatial pattern analysis, combined with historical data of livestock abundances and climatic records. Results: J. thurifera establishment occurred in two distinct pulses, with a tree component establishing in the late 1800s to early 1900s. Quercus ilex and Pinus sylvestris establishment was evident only from the late 1970s onward. Recruitment events were related to reductions in livestock browsing. J. thurifera spatial structure was clumped and Q. ilex showed a short-scale aggregation to J. thurifera trees and saplings. Radial growth trends of J. thurifera saplings, Q. ilex and P. sylvestris were negatively related to livestock density. Summer drought limited the radial growth of all the study species, and P. sylvestris and Q. ilex grew faster than J. thurifera even after considering an age effect. Conclusions: The differences in radial growth patterns and recruitment pulses between species indicate that livestock browsing and not abiotic factors is the main factor controlling plant succession and structural development. In this process, J. thurifera acts as a nurse plant, facilitating the establishment of other tree species. Under the current low pressure from herbivores, formerly pure J. thurifera woodlands will change towards dense stands of mixed species composition. [source] |