Spatial Memory Deficits (spatial + memory_deficit)

Distribution by Scientific Domains


Selected Abstracts


Ethanol Attenuates Spatial Memory Deficits and Increases mGlu1a Receptor Expression in the Hippocampus of Rats Exposed to Prenatal Stress

ALCOHOLISM, Issue 8 2009
Vincent Van Waes
Background:, Although it is generally believed that chronic ethanol consumption impairs learning and memory, results obtained in experimental animals are not univocal, and there are conditions in which ethanol paradoxically improves cognitive functions. In the present work, we investigated the effects of prenatal stress and of chronic ethanol exposure during adulthood on spatial memory in rats. Methods:, Rats were subjected to a prenatal stress delivered as 3 daily 45-minute sections of restraint stress to the mothers during the last 10 days of pregnancy (PRS rats). After 7 months of ethanol exposure (ethanol 10%, oral intake), memory performances were evaluated in a spatial discrimination test in control and PRS male rats. Then, the oxidative damages and the expression of metabotropic glutamate (mGlu) receptors were assessed in their hippocampus. Results:, Chronic ethanol exposure resulted in a reduced performance in a spatial recognition task in control animals. Unexpectedly, however, the same treatment attenuated spatial memory deficits in rats that had been subjected to prenatal stress. This paradigm of ethanol administration did not produce detectable signs of oxidative damage in the hippocampus in either unstressed or PRS rats. Interestingly, ethanol intake resulted in differential effects in the expression of mGlu receptor subtypes implicated in mechanisms of learning and memory. In control rats, ethanol intake reduced mGlu2/3 and mGlu5 receptor levels in the hippocampus; in PRS rats, which exhibited a constitutive reduction in the levels of these mGlu receptor subtypes, ethanol increased the expression of mGlu1a receptors but did not change the expression of mGlu2/3 or mGlu5 receptors. Conclusion:, Our findings support the idea that stress-related events occurring before birth have long-lasting effects on brain function and behavior, and suggest that the impact of ethanol on cognition is not only dose- and duration-dependent, but also critically influenced by early life experiences. [source]


Age-dependent cognitive decline in the APP23 model precedes amyloid deposition

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 2 2003
Debby Van Dam
Abstract Heterozygous APP23 mice, expressing human amyloid-precursor protein with the Swedish double mutation and control littermates, were subjected to behavioral and neuromotor tasks at the age of 6,8 weeks, 3 and 6 months. A hidden-platform Morris-type water maze showed an age-dependent decline of spatial memory capacities in the APP23 model. From the age of 3 months onwards, the APP23 mice displayed major learning and memory deficits as demonstrated by severely impaired learning curves during acquisition and impaired probe trial performance. In addition to the cognitive deficit, APP23 mice displayed disturbed activity patterns. Overnight cage-activity recording showed hyperactivity in the transgenics for the three age groups tested. However, a short 2-h recording during dusk phase demonstrated lower activity levels in 6-month-old APP23 mice as compared to controls. Moreover, at this age, APP23 mice differed from control littermates in exploration and activity levels in the open-field paradigm. These findings are reminiscent of disturbances in circadian rhythms and activity observed in Alzheimer patients. Determination of plaque-associated human amyloid-,1,42 peptides in brain revealed a fivefold increase in heterozygous APP23 mice at 6 months as compared to younger transgenics. This increase coincided with the first appearance of plaques in hippocampus and neocortex. Spatial memory deficits preceded plaque formation and increase in plaque-associated amyloid-,1,42 peptides, but probe trial performance did correlate negatively with soluble amyloid-, brain concentration in 3-month-old APP23 mutants. Detectable plaque formation is not the (only) causal factor contributing to memory defects in the APP23 model. [source]


Hippocampal synaptic transmission and LTP in vivo are intact following bilateral vestibular deafferentation in the rat

HIPPOCAMPUS, Issue 4 2010
Yiwen Zheng
Abstract Numerous studies in animals and humans have shown that damage to the vestibular system in the inner ear results in spatial memory deficits, presumably because areas of the brain such as the hippocampus require vestibular input to accurately represent the spatial environment. Consistent with this hypothesis, studies in animals have demonstrated that complete bilateral vestibular deafferentation (BVD) causes a disruption of place cell firing as well as theta activity. The aim of this study was to investigate whether BVD in rats affects baseline field potentials (field excitatory postsynaptic potentials and population spikes) and long-term potentiation (LTP) in CA1 and the dentate gyrus (DG) of awake freely moving rats up to 43 days post-BVD and of anesthetized rats at 7 months post-BVD. Compared to sham controls, BVD had no significant effect on either baseline field potentials or LTP in either condition. These results suggest that although BVD interferes with the encoding, consolidation, and/or retrieval of spatial memories and the function of place cells, these changes are not related to detectable in vivo decrements in basal synaptic transmission or LTP, at least in the investigated pathways. © 2009 Wiley-Liss, Inc. [source]


Effects of a Novel Cognition-Enhancing Agent on Fetal Ethanol-Induced Learning Deficits

ALCOHOLISM, Issue 10 2010
Daniel D. Savage
Background:, Drinking during pregnancy has been associated with learning disabilities in affected offspring. At present, there are no clinically effective pharmacotherapeutic interventions for these learning deficits. Here, we examined the effects of ABT-239, a histamine H3 receptor antagonist, on fetal ethanol-induced fear conditioning and spatial memory deficits. Methods and Results:, Long-Evans rat dams stably consumed a mean of 2.82 g ethanol/kg during a 4-hour period each day during pregnancy. This voluntary drinking pattern produced a mean peak serum ethanol level of 84 mg/dl. Maternal weight gain, litter size and birth weights were not different between the ethanol-consuming and control groups. Female adult offspring from the control and fetal alcohol-exposed (FAE) groups received saline or 1 mg ABT-239/kg 30 minutes prior to fear conditioning training. Three days later, freezing time to the context was significantly reduced in saline-treated FAE rats compared to control. Freezing time in ABT-239-treated FAE rats was not different than that in controls. In the spatial navigation study, adult male offspring received a single injection of saline or ABT-239 30 minutes prior to 12 training trials on a fixed platform version of the Morris Water Task. All rats reached the same performance asymptote on Trials 9 to 12 on Day 1. However, 4 days later, first-trial retention of platform location was significantly worse in the saline-treated FAE rats compared control offspring. Retention by ABT-239-treated FAE rats was similar to that by controls. ABT-239's effect on spatial memory retention in FAE rats was dose dependent. Conclusions:, These results suggest that ABT-239 administered prior to training can improve retention of acquired information by FAE offspring on more challenging versions of hippocampal-sensitive learning tasks. Further, the differential effects of ABT-239 in FAE offspring compared to controls raises questions about the impact of fetal ethanol exposure on histaminergic neurotransmission in affected offspring. [source]


Ethanol Attenuates Spatial Memory Deficits and Increases mGlu1a Receptor Expression in the Hippocampus of Rats Exposed to Prenatal Stress

ALCOHOLISM, Issue 8 2009
Vincent Van Waes
Background:, Although it is generally believed that chronic ethanol consumption impairs learning and memory, results obtained in experimental animals are not univocal, and there are conditions in which ethanol paradoxically improves cognitive functions. In the present work, we investigated the effects of prenatal stress and of chronic ethanol exposure during adulthood on spatial memory in rats. Methods:, Rats were subjected to a prenatal stress delivered as 3 daily 45-minute sections of restraint stress to the mothers during the last 10 days of pregnancy (PRS rats). After 7 months of ethanol exposure (ethanol 10%, oral intake), memory performances were evaluated in a spatial discrimination test in control and PRS male rats. Then, the oxidative damages and the expression of metabotropic glutamate (mGlu) receptors were assessed in their hippocampus. Results:, Chronic ethanol exposure resulted in a reduced performance in a spatial recognition task in control animals. Unexpectedly, however, the same treatment attenuated spatial memory deficits in rats that had been subjected to prenatal stress. This paradigm of ethanol administration did not produce detectable signs of oxidative damage in the hippocampus in either unstressed or PRS rats. Interestingly, ethanol intake resulted in differential effects in the expression of mGlu receptor subtypes implicated in mechanisms of learning and memory. In control rats, ethanol intake reduced mGlu2/3 and mGlu5 receptor levels in the hippocampus; in PRS rats, which exhibited a constitutive reduction in the levels of these mGlu receptor subtypes, ethanol increased the expression of mGlu1a receptors but did not change the expression of mGlu2/3 or mGlu5 receptors. Conclusion:, Our findings support the idea that stress-related events occurring before birth have long-lasting effects on brain function and behavior, and suggest that the impact of ethanol on cognition is not only dose- and duration-dependent, but also critically influenced by early life experiences. [source]


Chronic Intermittent Ethanol Exposure During Adolescence Blocks Ethanol-Induced Inhibition of Spontaneously Active Hippocampal Pyramidal Neurons

ALCOHOLISM, Issue 1 2006
Sayaka Tokunaga
Background: Binge alcohol drinking among adolescents has been a serious public health problem. A model of binge alcohol, chronic intermittent ethanol exposure (CIEE), during adolescence significantly attenuates ethanol-induced spatial memory deficits in rats. However, the attenuation was absent following a 12-day ethanol-free period. Since spatial memory is hippocampal dependent, a reduction in ethanol-induced spatial memory impairments may be due to a reduction in the ability of ethanol to inhibit the firing rate of single hippocampal pyramidal neurons following CIEE. Methods: Beginning on postnatal day 30 (P30), male adolescent Sprague-Dawley rats (Harlan) were administered 5.0 g/kg ethanol (n=10, CIEE-treated group) or an equivolume saline (n=10, CISE-treated group) every 48 hours for 20 days. Single hippocampal pyramidal neurons from 5 CIEE-treated rats and 5 CISE-treated rats were recorded on the day following completion of the chronic intermittent exposure procedure (animals now P50). Additionally, neurons from 5 CIEE-treated rats and 5 CISE-treated rats were recorded 12 days after the completion of the chronic intermittent exposure procedure (animals now P62). Results: Ethanol exposure during adolescence completely blocked ethanol-induced inhibition of hippocampal pyramidal neurons in rats that were CIEE exposed. However, the effect of CIEE on hippocampal neurophysiology was time dependent. Specifically, neurons recorded from CIEE-treated rats after a 12-day ethanol-free period had similar maximal inhibition as neurons from CISE-treated animals, although the time to reach inhibition was significantly greater in neurons from CIEE-treated rats. Conclusion: Chronic ethanol exposure during adolescence produces a reduction, or tolerance, to ethanol-induced inhibition of hippocampal pyramidal neural activity. Although the tolerance was greatly reversed after a 12-day ethanol-free period, neurons from CIEE animals inhibited slower than neurons from CISE animals. Since the hippocampus is known to be involved not only in spatial memory, but also in many other types of memory formation, the altered hippocampal functions because of CIEE during adolescence should be taken as a serious warning for society. [source]


Chronic Intermittent Injections of High-Dose Ethanol During Adolescence Produce Metabolic, Hypnotic, and Cognitive Tolerance in Rats

ALCOHOLISM, Issue 10 2003
Janelle M. Silvers
Background: Many humans are first exposed to ethanol during adolescence, the time at which they are most likely to binge drink ethanol. Chronic intermittent ethanol (CIE) exposure produces ethanol tolerance in adolescent rodents. Recent studies suggested that adolescent animals administered CIE experienced increased cognitive impairment following an ethanol challenge. These studies further explore development of ethanol tolerance caused by CIE in adolescence, and whether CIE during adolescence leads to altered ethanol response in adulthood. Methods: Beginning postnatal day (P) 30, adolescent rats were administered 5.0 g/kg ethanol or saline every 48 hours for 20 days. In experiment I, animals were tested for differential weight gain. In experiment II, loss of righting reflex (LORR) was observed after each injection, then at completion of pretreatment all animals were tested with 5.0 g/kg ethanol and LORR was observed. In experiment III, blood ethanol levels were observed and elimination rates calculated after the first and fifth pretreatments. All animals were tested with 5.0 g/kg at completion of pretreatment and elimination rates were recalculated. In experiment IV, animals were trained on the spatial version of the Morris Water Maze Task (MWMT) on non-treatment days. Following completion of pretreatment and training, animals were tested after receiving an ethanol (1.0, 1.5, or 2.0 g/kg), or saline. Tests for experiments II, III, and IV were repeated in the same animals following 12 ethanol-free days. Results: Chronic intermittent ethanol exposure during adolescence caused differential weight gain (experiment I). Adolescent rats developed tolerance to ethanol-induced LORR (experiment II) and metabolic tolerance to ethanol (experiment III). This tolerance was seen after 12 ethanol-free days. CIE also attenuated ethanol-induced spatial memory deficits in the MWMT (experiment IV). This effect was not long-lasting. Conclusions: Following CIE pretreatment during adolescence, tolerance developed to the hypnotic and cognitive impairing effects of ethanol, along with increased metabolic rate and decreased weight gain. These results further emphasize the ability of CIE to produce a variety of effects during adolescence, some having long-lasting consequences. [source]


Protective effects of lithium treatment for spatial memory deficits induced by tau hyperphosphorylation in splenectomized rats

CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, Issue 10 2010
Wen-Fei Tan
Summary 1. Postoperative cognitive dysfunction has become more prevalent in recent years. We used a splenectomized rat model with postoperative spatial learning and memory deficits to investigate the role of tau hyperphosphorylation and glycogen synthase kinase-3, (GSK-3,) within the hippocampus. 2. Cognitive function was assessed in a Y-maze 1 day before and 1, 3 and 7 days after surgery. We measured site-specific phosphorylation of hippocampal tau (Thr-205 and Ser-396), GSK-3, activity and expression of interleukin-1, (IL-1,), tumour necrosis factor-, (TNF-,) mRNA and protein as markers of inflammation. We also tested the effects of treatment with lithium chloride (LiCl), a GSK-3, inhibitor. 3. Splenectomy was associated with learning and memory impairment 3 days later, as well as a rapid and massive hyperphosphorylation of hippocampal tau at Thr-205 and Ser-396, activated GSK-3,, and increased IL-1, and TNF-, expression. LiCl completely restored tau hyperphosphorylation to control levels. 4. These data from the splenectomized rat model suggest that inflammatory factors affect tau pathology through the GSK-3, signalling pathway and that LiCl is a promising treatment for postoperative cognitive deficits. [source]