Home About us Contact | |||
Spatial Locations (spatial + locations)
Kinds of Spatial Locations Selected AbstractsThe strength of anticipatory spatial biasing predicts target discrimination at attended locations: a high-density EEG studyEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 11 2009Simon P. Kelly Abstract Cueing relevant spatial locations in advance of a visual target results in modulated processing of that target as a consequence of anticipatory attentional deployment, the neural signatures of which remain to be fully elucidated. A set of electrophysiological processes has been established as candidate markers of the invocation and maintenance of attentional bias in humans. These include spatially-selective event-related potential (ERP) components over the lateral parietal (around 200,300 ms post-cue), frontal (300,500 ms) and ventral visual (> 500 ms) cortex, as well as oscillatory amplitude changes in the alpha band (8,14 Hz). Here, we interrogated the roles played by these anticipatory processes in attentional orienting by testing for links with subsequent behavioral performance. We found that both target discriminability (d') and reaction times were significantly predicted on a trial-by-trial basis by lateralization of alpha-band amplitude in the 500 ms preceding the target, with improved speed and accuracy resulting from a greater relative decrease in alpha over the contralateral visual cortex. Reaction time was also predicted by a late posterior contralateral positivity in the broad-band ERP in the same time period, but this did not influence d'. In a further analysis we sought to identify the control signals involved in generating the anticipatory bias, by testing earlier broad-band ERP amplitude for covariation with alpha lateralization. We found that stronger alpha biasing was associated with a greater bilateral frontal positivity at ,390 ms but not with differential amplitude across hemispheres in any time period. Thus, during the establishment of an anticipatory spatial bias, while the expected target location is strongly encoded in lateralized activity in parietal and frontal areas, a distinct non-spatial control process seems to regulate the strength of the bias. [source] Ventral hippocampal involvement in temporal order, but not recognition, memory for spatial informationHIPPOCAMPUS, Issue 3 2008John G. Howland Abstract The hippocampus is critical for spatial memory. Recently, subregional differences in the function of hippocampus have been described in a number of behavioral tasks. The present experiments assessed the effects of reversibly lesioning either the dorsal (dHip) or ventral hippocampus (vHip) on spontaneous tests of spatial recognition and temporal order memory. We report that although the dHip is necessary for spatial recognition memory (RM) (distinguishing a novel from a familiar spatial location), the vHip is involved in temporal order memory (the capacity to distinguish between two spatial locations visited at different points in time), but not RM. These findings and others are consistent with the hypothesis that temporal order memory is supported by an integrated circuit of limbic areas including the vHip and the medial prefrontal cortex. © 2007 Wiley-Liss, Inc. [source] Phase precession and phase-locking of hippocampal pyramidal cellsHIPPOCAMPUS, Issue 3 2001Amitabha Bose Abstract We propose that the activity patterns of CA3 hippocampal pyramidal cells in freely running rats can be described as a temporal phenomenon, where the timing of bursts is modulated by the animal's running speed. With this hypothesis, we explain why pyramidal cells fire in specific spatial locations, and how place cells phase-precess with respect to the EEG theta rhythm for rats running on linear tracks. We are also able to explain why wheel cells phase-lock with respect to the theta rhythm for rats running in a wheel. Using biophysically minimal models of neurons, we show how the same network of neurons displays these activity patterns. The different rhythms are the result of inhibition being used in different ways by the system. The inhibition is produced by anatomically and physiologically diverse types of interneurons, whose role in controlling the firing patterns of hippocampal cells we analyze. Each firing pattern is characterized by a different set of functional relationships between network elements. Our analysis suggests a way to understand these functional relationships and transitions between them. Hippocampus 2001;11:204,215. © 2001 Wiley-Liss, Inc. [source] Acute cognitive effects of donepezil in young, healthy volunteersHUMAN PSYCHOPHARMACOLOGY: CLINICAL AND EXPERIMENTAL, Issue 6 2009Ana LC Zaninotto Abstract Objective The acute nootropic potential of donepezil in young healthy volunteers has not been adequately investigated mainly because in previous studies: (1) effects were assessed before peak-plasma concentration (Tmax) was reached; (2) only a few cognitive processes were assessed. Here we investigated a myriad of cognitive effects of augmentation of acetylcholine using an acute dose of donepezil in healthy adults at theoretical Tmax. Methods This was a double-blind, placebo controlled, parallel group design study of cognitive effects of acute oral donepezil (5,mg). Subjects were tested twice after donepezil ingestion: 90,min (time that coincides with previous testing in the literature) and 210,min. (theoretical Tmax). The test battery included tasks that tap cognitive domains that are sensitive to acetylcholine manipulations. Results At both testing times donepezil improved long-term recall of prose, objects recall, recall of spatial locations, and integration of objects with their locations, some effects having been related to self-reported mood enhancement. However, improvement of performance in the central executive measure (backward digit span) occurred only at Tmax. Conclusion Positive cognitive effects of acute donepezil can be observed in various cognitive domains including mood, but its full nootropic potential is more clearly found close to theoretical peak-plasma concentration. Copyright © 2009 John Wiley & Sons, Ltd. [source] Analytical power series solutions to the two-dimensional advection,dispersion equation with distance-dependent dispersivitiesHYDROLOGICAL PROCESSES, Issue 24 2008Jui-Sheng Chen Abstract As is frequently cited, dispersivity increases with solute travel distance in the subsurface. This behaviour has been attributed to the inherent spatial variation of the pore water velocity in geological porous media. Analytically solving the advection,dispersion equation with distance-dependent dispersivity is extremely difficult because the governing equation coefficients are dependent upon the distance variable. This study presents an analytical technique to solve a two-dimensional (2D) advection,dispersion equation with linear distance-dependent longitudinal and transverse dispersivities for describing solute transport in a uniform flow field. The analytical approach is developed by applying the extended power series method coupled with the Laplace and finite Fourier cosine transforms. The developed solution is then compared to the corresponding numerical solution to assess its accuracy and robustness. The results demonstrate that the breakthrough curves at different spatial locations obtained from the power series solution show good agreement with those obtained from the numerical solution. However, owing to the limited numerical operation for large values of the power series functions, the developed analytical solution can only be numerically evaluated when the values of longitudinal dispersivity/distance ratio eL exceed 0·075. Moreover, breakthrough curves obtained from the distance-dependent solution are compared with those from the constant dispersivity solution to investigate the relationship between the transport parameters. Our numerical experiments demonstrate that a previously derived relationship is invalid for large eL values. The analytical power series solution derived in this study is efficient and can be a useful tool for future studies in the field of 2D and distance-dependent dispersive transport. Copyright © 2008 John Wiley & Sons, Ltd. [source] Repetition effect in visual recognition of letters1JAPANESE PSYCHOLOGICAL RESEARCH, Issue 2 2004TOSHINORI KUWANA Abstract:, This study examined the influence of the repetitive presentation of a letter on the recognition of two letters. In two experiments4, two letters, which were either identical or not, were presented successively for a short duration at different spatial locations, and the subjects were required to identify them. In Experiment 1, the presentation time of the first letter was varied, whereas that of the second letter was constant. The results revealed that a reduced performance in identifying a second letter was observed in the case that the first letter, which was identical to the second letter, could be identified correctly. Experiment 2 examined whether or not this reduction was due to the identity of the visual shape of two letters. The first letter was presented either in the usual vertical orientation or rotated orientation by 180 degrees and the second letter was constantly presented in the usual orientation. The results revealed that a reduced performance in identifying a repeated letter was observed, regardless of the orientation of the first letter. The findings from the two experiments suggested that the identity of the information in memory was a main cause of the interference effect by repetition. [source] The Ambiguous Veil: On Transparency, the Mashrabiy'ya, and ArchitectureJOURNAL OF ARCHITECTURAL EDUCATION, Issue 4 2003BECHIR KENZARI Transparency without a glazed medium can be found in the Middle Eastern device of the mashrabiy'ya. Promoted by Orientalism as a typical Eastern motif, it has slowly become a mark of subjugation and confinement. The logic of the mashrabiy'ya permits other interpretations, however. By trying to etymologically and historically link it to weaving and holiness, to the veil and its uplifting, to the gaze and its subtleties, an attempt is made here to liberate this device from excessive interpretations and to present it as an architectural motif that involves a motivated perception of different spatial locations, a viewpoint, a stand, and an intention. Thus, the mashrabiy'ya becomes closely linked to phenomenological transparency. [source] Prediction of Polymer Properties in LDPE ReactorsMACROMOLECULAR MATERIALS & ENGINEERING, Issue 4 2005Gary J. Wells Abstract Summary: A new analysis tool is presented that uses the governing kinetic scheme to predict properties of low-density polyethylene (LDPE) such as the detailed shape of the molecular weight distribution (MWD). A model that captures mixing details of autoclave reactor operation is used to provide a new criterion for the onset of MWD shouldering. Kinetic effects are shown to govern the existence of MWD shoulders in LDPE reactors, even when operation is far from perfectly-mixed. MWD shoulders occur when the mean reaction environment has a relatively high radical concentration and has a high polymer content, and is at a low temperature. Such conditions maximize long chain formation by polymer transfer and combination-termination, while limiting chain scission. For imperfectly-mixed reactors, the blending of polymer-distributions produced in different spatial locations has a small effect on the composite MWD. However, for adiabatic LDPE autoclaves, imperfect mixing broadens the stable range of mean reactor conditions, and thereby increases the possibility for MWD shouldering. Polymer MWD produced in an LDPE autoclave reactor by various kinetic mechanisms. [source] On the timing characteristics of the apparent diffusion coefficient contrast in fMRIMAGNETIC RESONANCE IN MEDICINE, Issue 2 2002Stacey L. Gangstead Abstract For the past 10 years, functional MRI (fMRI) has seen rapid progress in both clinical and basic science research. Most of the imaging techniques are based on the blood oxygenation level-dependent (BOLD) contrast which arises from the field perturbation of the paramagnetic deoxyhemoglobin due to the mismatch between the local oxygen demand and delivery. Because the changes of oxygenation level take place mostly in the veins, the dominant signal sources of the BOLD signal are intra- and extravascular proton pools of the veins. Perfusion imaging methods, developed parallel to the BOLD technique, seek to quantify the blood flow and perfusion. Recently, perfusion imaging using arterial spin tagging methods have been used to study brain function by investigating the changes of the blood flow and perfusion during brain activation, thereby generating an alternative contrast mechanism to the functional brain imaging. Since most of these methods require tagging pulse and wait time for blood to be delivered to the imaged slice, the temporal resolution may not be optimal. Dynamic intravoxel incoherent motion (IVIM) weighting schemes using apparent diffusion coefficient (ADC) contrast were suggested to image the relative changes of the in-plane blood flow during brain function. In this report, it was demonstrated that, in addition to the spatial discrepancies of the activated areas, the time course based on the ADC contrast consistently precedes that from the BOLD contrast with timing offset on the order of 1 sec. Since arterial networks would have different spatial locations and preceding temporal characters, the findings in this report are indicative that the ADC contrast is sensitive to the arterial blood flow changes. Magn Reson Med 48:385,388, 2002. © 2002 Wiley-Liss, Inc. [source] Use of resistance surfaces for landscape genetic studies: considerations for parameterization and analysisMOLECULAR ECOLOGY, Issue 17 2010STEPHEN F. SPEAR Abstract Measures of genetic structure among individuals or populations collected at different spatial locations across a landscape are commonly used as surrogate measures of functional (i.e. demographic or genetic) connectivity. In order to understand how landscape characteristics influence functional connectivity, resistance surfaces are typically created in a raster GIS environment. These resistance surfaces represent hypothesized relationships between landscape features and gene flow, and are based on underlying biological functions such as relative abundance or movement probabilities in different land cover types. The biggest challenge for calculating resistance surfaces is assignment of resistance values to different landscape features. Here, we first identify study objectives that are consistent with the use of resistance surfaces and critically review the various approaches that have been used to parameterize resistance surfaces and select optimal models in landscape genetics. We then discuss the biological assumptions and considerations that influence analyses using resistance surfaces, such as the relationship between gene flow and dispersal, how habitat suitability may influence animal movement, and how resistance surfaces can be translated into estimates of functional landscape connectivity. Finally, we outline novel approaches for creating optimal resistance surfaces using either simulation or computational methods, as well as alternatives to resistance surfaces (e.g. network and buffered paths). These approaches have the potential to improve landscape genetic analyses, but they also create new challenges. We conclude that no single way of using resistance surfaces is appropriate for every situation. We suggest that researchers carefully consider objectives, important biological assumptions and available parameterization and validation techniques when planning landscape genetic studies. [source] Realized gene flow within mixed stands of Quercus robur L. and Q. petraea (Matt.) L. revealed at the stage of naturally established seedlingMOLECULAR ECOLOGY, Issue 10 2010I. J. CHYBICKI Abstract The estimates of contemporary gene flow assessed based on naturally established seedlings provide information much needed for understanding the abilities of forest tree populations to persist under global changes through migration and/or adaptation facilitated by gene exchange among populations. Here, we investigated pollen- and seed-mediated gene flow in two mixed-oak forest stands (consisting of Quercus robur L. and Q. petraea [Matt.] Liebl.). The gene flow parameters were estimated based on microsatellite multilocus genotypes of seedlings and adults and their spatial locations within the sample plots using models that attempt to reconstruct the genealogy of the seedling cohorts. Pollen and seed dispersal were modelled using the standard seedling neighbourhood model and a modification,the 2-component seedling neighbourhood model, with the later allowing separation of the dispersal process into local and long-distance components. The 2-component model fitted the data substantially better than the standard model and provided estimates of mean seed and pollen dispersal distances accounting for long-distance propagule dispersal. The mean distance of effective pollen dispersal was found to be 298 and 463 m, depending on the stand, while the mean distance of effective seed dispersal was only 8.8 and 15.6 m, which is consistent with wind pollination and primarily seed dispersal by gravity in Quercus. Some differences observed between the two stands could be attributed to the differences in the stand structure of the adult populations and the existing understory vegetation. Such a mixture of relatively limited seed dispersal with occasional long distance gene flow seems to be an efficient strategy for colonizing new habitats with subsequent local adaptation, while maintaining genetic diversity within populations. [source] Feshbach shape resonance for high Tc superconductivity in superlattices of nanotubesPHYSICA STATUS SOLIDI (A) APPLICATIONS AND MATERIALS SCIENCE, Issue 11 2006Antonio Bianconi Abstract The case of a Feshbach shape resonance in the pairing mechanism for high Tc superconductivity in a crystalline lattice of doped metallic nanotubes is described. The superlattice of doped metallic nanotubes provides a superconductor with a strongly asymmetric gap. The disparity and different spatial locations of the wave functions of electrons in different subbands at the Fermi level should suppress the single electron impurity interband scattering giving multiband superconductivity in the clean limit. The Feshbach resonances will arise from the component single-particle wave functions out of which the electron pair wave function is constructed: pairs of wave functions which are time inverse of each other. The Feshbach shape resonance increases the critical temperature by tuning the chemical potential at the Lifshitz electronic topological transition (ETT) where the Fermi surface of one of the bands changes from the one dimensional (1D) to the two dimensional (2D) topology (1D/2D ETT). (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Interfacing mind and brain: A neurocognitive model of recognition memoryPSYCHOPHYSIOLOGY, Issue 5 2000Axel Mecklinger A variety of processes contribute to successful recognition memory, some of which can be associated with spatiotemporally distinct event-related potential old/new effects. An early frontal and a subsequent parietal old/new effect are correlated with the familiarity and recollection subcomponents of recognition memory, respectively, whereas a late, postretrieval old/new effect seems to reflect an ensemble of evaluation processes that are set by the task context in which retrieval occurs. Both the early frontal and the parietal old/new effects are differentially modulated by the informational content (e.g., object forms and spatial locations) of recognition and seem to rely on brain systems damaged in amnesia. The late frontal effect appears to reflect prefrontal cortex activation. A neurophysiologically based model of recognition memory retrieval is presented and it is shown that coupling recognition memory subprocesses with distinct old/new effects allow examination of the time course of the processes that contribute to correct and to illusory memories. In conjunction with event-related functional magnetic resonance imaging activation patterns the brain systems recruited by various aspects of episodic memory retrieval can be identified. [source] Memory for drawings in locations: Spatial source memory and event-related potentialsPSYCHOPHYSIOLOGY, Issue 4 2000Cyma van Petten Event-related potentials (ERPs) were recorded during recognition tasks for line drawings (items) or for both drawings and their spatial locations (sources). Recognized drawings elicited more positive ERPs than new drawings. Independent of accuracy in the spatial judgment, the old/new effect in the source recognition task was larger over the prefrontal scalp, and of longer temporal duration than in the item recognition task, suggesting that the source memory task engaged a qualitatively distinct memory process. More posterior scalp sites were sensitive to the accuracy of the source judgment, but this effect was delayed relative to the difference between studied and unstudied drawings, suggesting that source memory processes are completed after item recognition. Similarities and differences between spatial source memory and memory for conjunctions of other stimulus attributes are discussed, together with the role of prefrontal cortex in memory. [source] Working memory for ballet moves and spatial locations in professional ballet dancersAPPLIED COGNITIVE PSYCHOLOGY, Issue 2 2010Antonio Cortese The aim of the present study was to investigate working memory for ballet moves in expert dancers. Experiment 1 showed that a concurrent spatial task did not interfere with the recall of a sequence of ballet moves when these were encoded alone without being associated with spatial locations. Experiment 2 showed that a concurrent motor task selectively interfered with the recall of ballet moves while neither a concurrent motor task nor a spatial task affected recall of the specific locations where each ballet move had to be performed. Experiment 3 showed that spatial interference affected recall of sequences of locations when these were encoded alone. Finally, in Experiment 4, a similarity effect for patterned ballet movements was shown. Taken together results show that spatial interference does not affect short-term memory for ballet moves thus suggesting that working memory might contain a system for motor configurations. Copyright © 2009 John Wiley & Sons, Ltd. [source] Nerve supply of the brachioradialis muscle: Surgically relevant variations of the extramuscular branches of the radial nerveCLINICAL ANATOMY, Issue 7 2005Maria D. Latev Abstract The brachioradialis muscle is utilized in tendon-transfer operations, carried out for a variety of purposes. The extramuscular branches of the radial nerve to the brachioradialis were dissected and studied in 43 embalmed cadaveric specimens. The number of primary and secondary branches and the spatial locations of their origins and muscle-entry points was determined for each specimen. All distances were measured relative to the lateral epicondyle. A wide anatomic variation was observed in both the nerve branching pattern as well as the number and locations of muscle-entry points. A single primary nerve branch was found in 20 specimens, or 46.5% of the cases. On an average, single primary nerve branches arose from the radial nerve 30 mm proximal to the lateral epicondyle. In 16 of these cases, the primary branch splits into two to four secondary branches, and in four cases there was only one branch entering the muscle. Seventeen specimens had two primary branches whose origin points were separated by 5 to 40 mm with an average of 15 mm. In seven of these seventeen cases one or both of the primary branches split into secondary branches. Six specimens had three primary branches; the origin points of the most proximal and the most distal branch were separated by up to 30 mm with an average of 13 mm. Excluding the four cases with extensive fanning into multiple thin branches, the number of muscle-entry points ranged from 1 to 4 (mean 2.7). The locations of the muscle-entry points for all specimens were widespread ranging from 50 mm proximal and 40 mm distal to the lateral epicondyle with an average at 6 mm proximal to the lateral epicondyle. The greatest distance between muscle-entry points was 50 mm in a single specimen. In surgical procedures involving dissection of the brachioradialis muscle more proximal than 50 mm distal to the elbow, the extramuscular branch(es) of the radial nerve branches to the brachioradialis may be at risk. Clin. Anat. 18:488,492, 2005. © 2005 Wiley-Liss, Inc. [source] |