Home About us Contact | |||
Spatial Inhomogeneity (spatial + inhomogeneity)
Selected AbstractsMechanisms for Discordant AlternansJOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 2 2001MARI A. WATANABE M.D., Ph.D. Discordant Alternans Mechanism.Introduction: Discordant alternans has the potential to produce larger alternans of the ECG T wave than concordant alternans, but its mechanism is unknown. Methods and Results: We demonstrate by one- and two-dimensional simulation of action potential propagation models that discordant alternans can form spontaneously in spatially homogeneous tissue through one of two mechanisms, due to the interaction of conduction velocity and action potential duration restitution at high pacing frequencies or through the dispersion of diastolic interval produced by ectopic foci. In discordant alternans due to the first mechanism, the boundaries marking regions of alternans with opposite phase arise far from the stimulus site, move toward the stimulus site, and stabilize. Dynamic splitting of action potential duration restitution curves due to electrotonic coupling plays a crucial role in this stability. Larger tissues and faster pacing rates are conducive to multiple boundaries, and inhomogeneities of tissue properties facilitate or inhibit formation of boundaries. Conclusion: Spatial inhomogeneities of electrical restitution properties are not required to produce discordant alternans. [source] Interlayer coupling in magnetic superlattices with electron density inhomogeneitiesPHYSICA STATUS SOLIDI (B) BASIC SOLID STATE PHYSICS, Issue 1 2004W. Gruhn Abstract We discuss the influence of spatial inhomogeneities of the free electron density on the magnetic interaction between magnetic layers of the superlattice, mediated across nonmagnetic, metallic spacer. Using the modified total energy approach, we prove that the TM or RE superlattices the additional scattering of free electrons on magnetic ion multipole moment increases the ferroquadrupolar biquadratic coupling between magnetic layers. It is shown also that the nonuniform free electron density generates contribution to the interlayer coupling being of the Dzialoshinsky-Moriya type. (© 2003 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Engineering Disorder in Superdiffusive Lévy GlassesADVANCED FUNCTIONAL MATERIALS, Issue 6 2010Jacopo Bertolotti Abstract Disorder is known to have a substantial impact on light transport in optical materials. In particular, when properly tuned, disorder can unveil optical properties that common, periodically patterned materials do not possess. In this paper, a method to realize disordered dielectric materials dubbed Lévy glasses, in which light transport is superdiffusive, is presented. The degree of superdiffusion is set by engineering the spatial inhomogeneity of the scatterer density in the material. A model that relates the microscopic parameters to the macroscopic transport properties of Lévy glasses is given and the signature of superdiffusion on the transmission profile in a slab configuration is shown experimentally. [source] Extreme multielectron ionization of elemental clusters in ultraintense laser fieldsISRAEL JOURNAL OF CHEMISTRY, Issue 2 2007Andreas Heidenreich In this paper we present computational and theoretical studies of extreme multielectron ionization in Xen clusters (n = 55-2171, initial cluster radii R0 = 8.7-31.0 Å) driven by ultraintense Gaussian infrared laser fields (peak intensity IM = 1015 -1020 W cm,2, temporal pulse length , = 10-100 fs, and frequency v = 0.35fs,1). The microscopic approach, which rests on three sequential-parallel processes of inner ionization, nanoplasma formation, and outer ionization, properly describes the high ionization levels (with the formation of {Xeq+}n with q = 5-36), the inner/outer cluster ionization mechanisms, and the nanoplasma response. The cluster size and laser intensity dependence of the inner ionization levels are determined by a complex superposition of laser-induced barrier suppression ionization (BSI), with the contributions of the inner field BSI manifesting ignition enhancement and screening retardation effects, together with electron impact ionization. The positively charged nanoplasma produced by inner ionization reveals intensity-dependent spatial inhomogeneity and spatial anisotropy, and can be either persistent (at lower intensities) or transient (at higher intensities). The nanoplasma is depleted by outer ionization that was semiquantitatively described by the cluster barrier suppression electrostatic model, which accounts for the cluster size, laser intensity, and pulse length dependence of the outer ionization yield. [source] Interpenetrating Polymer Networks with Spatially Graded Morphology Controllable by UV-Radiation CuringMACROMOLECULAR SYMPOSIA, Issue 1 2006Hideyuki Nakanishi Abstract Interpenetrating Polymer Networks (IPNs) composed of polystyrene (PS) and poly(methyl methacrylate) (PMMA) were synthesized from a precursor mixture by using dissimilar photo-cross-link reactions. When the reation yields exceeded a certain threshold, the mixture was quenched from one-phase region into two-phase region, leading to phase separation. Upon irradiation with strong UV-light, an intensity gradient was formed along the propagating direction of the exciting light, generating a gradient of quench depth via the spatial inhomogeneity of the cross-link reactions. As a consequence, a gradient of the characteristic length scales was continuously generated from the top to the bottom of the mixture. The resulting three-dimensional (3-D) morphology was in-situ observed at different depths of the mixture by using a laser-scanning confocal microscope (LSCM). From this 3-D observation, it was found that phase separation was accelerated at the bottom of the mixture and proceeded in an autocatalytic fashion. The mechanism for the formation of the graded morphology was discussed in conjunction with the kinetics of the autocatalytic phase separation. [source] |