Spatial Heterogeneity (spatial + heterogeneity)

Distribution by Scientific Domains
Distribution within Life Sciences


Selected Abstracts


Diminishing Spatial Heterogeneity in Soil Organic Matter across a Prairie Restoration Chronosequence

RESTORATION ECOLOGY, Issue 2 2005
Diana R. Lane
Abstract Habitat restoration resulting in changes in plant community composition or species dominance can affect the spatial pattern and variability of soil nutrients. Questions about how these changes in soil spatial heterogeneity develop over time at restoration sites, however, remain unaddressed. In this study, a geostatistical approach was used to quantify changes over time in the spatial heterogeneity of soil organic matter (SOM) across a 26-year chronosequence of tallgrass prairie restoration sites at FermiLab, outside of Chicago, Illinois. We used total soil N and C as an index of the quantity of SOM. We also examined changes in C:N ratio, which can influence the turnover of SOM. Specifically, the spatial structure of total N, total C, and C:N ratio in the top 10 cm of soil was quantified at a macroscale (minimum spacing of 1.5 m) and a microscale (minimum spacing of 0.2 m). The magnitude of spatial heterogeneity (MSH) was characterized as the proportion of total sample variation explained by spatially structured variation. At the macroscale, the MSH for total N decreased with time since restoration (r2= 0.99, p < 0.001). The decrease in spatial heterogeneity over time corresponded with a significant increase in the dominance of the C4 grasses. At the microscale, there was significant spatial structure for total N at the 4-year-old, 16-year-old, and 26-year-old sites, and significant spatial structure for total C at the 16-year-old and 26-year-old sites. These results suggest that an increase in dominance of C4 grasses across the chronosequence is homogenizing organic matter variability at the field scale while creating fine-scale patterns associated with the spacing of vegetation. Areas of higher soil moisture were associated with higher soil N and C at the two oldest restoration sites and at the native prairie site, potentially suggesting patches of increased belowground productivity in areas of higher soil moisture. This study is one of the first to report significant changes over time in the spatial structure of organic matter in response to successional changes initiated by restoration. [source]


Hairy Root Culture in a Liquid-Dispersed Bioreactor: Characterization of Spatial Heterogeneity

BIOTECHNOLOGY PROGRESS, Issue 3 2000
Gary R. C. Williams
A liquid-dispersed reactor equipped with a vertical mesh cylinder for inoculum support was developed for culture of Atropa belladonna hairy roots. The working volume of the culture vessel was 4.4 L with an aspect ratio of 1.7. Medium was dispersed as a spray onto the top of the root bed, and the roots grew radially outward from the central mesh cylinder to the vessel wall. Significant benefits in terms of liquid drainage and reduced interstitial liquid holdup were obtained using a vertical rather than horizontal support structure for the biomass and by operating the reactor with cocurrent air and liquid flow. With root growth, a pattern of spatial heterogeneity developed in the vessel. Higher local biomass densities, lower volumes of interstitial liquid, lower sugar concentrations, and higher root atropine contents were found in the upper sections of the root bed compared with the lower sections, suggesting a greater level of metabolic activity toward the top of the reactor. Although gas-liquid oxygen transfer to the spray droplets was very rapid, there was evidence of significant oxygen limitations in the reactor. Substantial volumes of non-free-draining interstitial liquid accumulated in the root bed. Roots near the bottom of the vessel trapped up to 3,4 times their own weight in liquid, thus eliminating the advantages of improved contact with the gas phase offered by liquid-dispersed culture systems. Local nutrient and product concentrations in the non-free-draining liquid were significantly different from those in the bulk medium, indicating poor liquid mixing within the root bed. Oxygen enrichment of the gas phase improved neither growth nor atropine production, highlighting the greater importance of liquid-solid compared with gas-liquid oxygen transfer resistance. The absence of mechanical or pneumatic agitation and the tendency of the root bed to accumulate liquid and impede drainage were identified as the major limitations to reactor performance. Improved reactor operating strategies and selection or development of root lines offering minimal resistance to liquid flow and low liquid retention characteristics are possible solutions to these problems. [source]


A structured model for the simulation of bioreactors under transient conditions

AICHE JOURNAL, Issue 11 2009
Jérôme Morchain
Abstract Modeling the transient behavior of continuous culture is of primary importance for the scale-up of biological processes. Spatial heterogeneities increase with the reactor size and micro-organisms have to cope with a fluctuating environment along their trajectories within the bioreactor. In this article, a structured model for bioreactions expressed in terms of biological extensive variables is proposed. A biological variable is introduced to calculate the growth rate of the population. The value is updated on the basis of the difference between the composition in the liquid and biotic phase. The structured model is able to predict the transient behavior of different continuous cultures subject to various drastic perturbations. This performance is obtained with a minimum increase in the standard unstructured model complexity (one additional time constant). In the final part, the consequences of decoupling the growth rate from the substrate uptake rate are discussed. © 2009 American Institute of Chemical Engineers AIChE J, 2009 [source]


The geography of climate change: implications for conservation biogeography

DIVERSITY AND DISTRIBUTIONS, Issue 3 2010
D. D. Ackerly
Abstract Aim, Climate change poses significant threats to biodiversity, including impacts on species distributions, abundance and ecological interactions. At a landscape scale, these impacts, and biotic responses such as adaptation and migration, will be mediated by spatial heterogeneity in climate and climate change. We examine several aspects of the geography of climate change and their significance for biodiversity conservation. Location, California and Nevada, USA. Methods, Using current climate surfaces (PRISM) and two scenarios of future climate (A1b, 2070,2099, warmer-drier and warmer-wetter), we mapped disappearing, declining, expanding and novel climates, and the velocity and direction of climate change in California and Nevada. We also examined fine-scale spatial heterogeneity in protected areas of the San Francisco Bay Area in relation to reserve size, topographic complexity and distance from the ocean. Results, Under the two climate change scenarios, current climates across most of California and Nevada will shrink greatly in extent, and the climates of the highest peaks will disappear from this region. Expanding and novel climates are projected for the Central Valley. Current temperature isoclines are projected to move up to 4.9 km year,1 in flatter regions, but substantially slower in mountainous areas because of steep local topoclimate gradients. In the San Francisco Bay Area, climate diversity within currently protected areas increases with reserve size and proximity to the ocean (the latter because of strong coastal climate gradients). However, by 2100 of almost 500 protected areas (>100 ha), only eight of the largest are projected to experience temperatures within their currently observed range. Topoclimate variability will further increase the range of conditions experienced and needs to be incorporated in future analyses. Main Conclusions, Spatial heterogeneity in climate, from mesoclimate to topoclimate scales, represents an important spatial buffer in response to climate change, and merits increased attention in conservation planning. [source]


New insights into global patterns of ocean temperature anomalies: implications for coral reef health and management

GLOBAL ECOLOGY, Issue 3 2010
Elizabeth R. Selig
ABSTRACT Aim, Coral reefs are widely considered to be particularly vulnerable to changes in ocean temperatures, yet we understand little about the broad-scale spatio-temporal patterns that may cause coral mortality from bleaching and disease. Our study aimed to characterize these ocean temperature patterns at biologically relevant scales. Location, Global, with a focus on coral reefs. Methods, We created a 4-km resolution, 21-year global ocean temperature anomaly (deviations from long-term means) database to quantify the spatial and temporal characteristics of temperature anomalies related to both coral bleaching and disease. Then we tested how patterns varied in several key metrics of disturbance severity, including anomaly frequency, magnitude, duration and size. Results, Our analyses found both global variation in temperature anomalies and fine-grained spatial variability in the frequency, duration and magnitude of temperature anomalies. However, we discovered that even during major climatic events with strong spatial signatures, like the El Niño,Southern Oscillation, areas that had high numbers of anomalies varied between years. In addition, we found that 48% of bleaching-related anomalies and 44% of disease-related anomalies were less than 50 km2, much smaller than the resolution of most models used to forecast climate changes. Main conclusions, The fine-scale variability in temperature anomalies has several key implications for understanding spatial patterns in coral bleaching- and disease-related anomalies as well as for designing protected areas to conserve coral reefs in a changing climate. Spatial heterogeneity in temperature anomalies suggests that certain reefs could be targeted for protection because they exhibit differences in thermal stress. However, temporal variability in anomalies could complicate efforts to protect reefs, because high anomalies in one year are not necessarily predictive of future patterns of stress. Together, our results suggest that temperature anomalies related to coral bleaching and disease are likely to be highly heterogeneous and could produce more localized impacts of climate change. [source]


100 years of change: examining agricultural trends, habitat change and stakeholder perceptions through the 20th century

JOURNAL OF APPLIED ECOLOGY, Issue 2 2009
Martin Dallimer
Summary 1The 20th century has witnessed substantial increases in the intensity of agricultural land management, much of which has been driven by policies to enhance food security and production. The knock-on effects in agriculturally dominated landscapes include habitat degradation and biodiversity loss. We examine long-term patterns of agricultural and habitat change at a regional scale, using the Peak District of northern England as a case study. As stakeholders are central to the implementation of successful land-use policy, we also assess their perceptions of historical changes. 2In the period 1900 to 2000, there was a fivefold rise in sheep density, along with higher cattle density. We found a reduction in the number of farms, evidence of a shift in land ownership patterns, and increased agricultural specialization, including the virtual disappearance of upland arable production. 3Despite previous studies showing a substantial loss in heather cover, we found that there had been no overall change in the proportion of land covered by dwarf shrub moor. Nonetheless, turnover rates were high, with only 55% of sampled sites maintaining dwarf shrub moor coverage between 1913 and 2000. 4Stakeholders identified many of the changes revealed by the historical data, such as increased sheep numbers, fewer farms and greater specialization. However, other land-use changes were not properly described. For instance, although there had been no overall change in the proportion of dwarf shrub moor and the size of the rural labour force had not fallen, stakeholders reported a decline in both. Spatial heterogeneity of the changes, shifting baselines and problems with historical data sources might account for some of these discrepancies. 5Synthesis and applications. A marked increase in sheep numbers, combined with general agricultural intensification, have been the dominant land-use processes in the Peak District during the 20th century. Stakeholders only correctly perceived some land-use changes. Policy and management objectives should therefore be based primarily on actual historical evidence. However, understanding stakeholder perceptions and how they differ from, or agree with, the available evidence will contribute to the successful uptake of land management policies and partly determine the costs of policy implementation. [source]


QT Dispersion Does Not Represent Electrocardiographic Interlead Heterogeneity of Ventricular Repolarization

JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 8 2000
MAREK MALIK Ph.D.
QT Dispersion and Repolarization Heterogeneity. Introduction: QT dispersion (QTd, range of QT intervals in 12 ECG leads) is thought to reflect spatial heterogeneity of ventricular refractoriness. However, QTd may be largely due to projections of the repolarization dipole rather than "nondipolar" signals. Methods and Results: Seventy-eight normal subjects (47 ± 16 years, 23 women), 68 hypertrophic cardiomyopathy patients (HCM; 38 ± 15 years. 21 women), 72 dilated cardiomyopathy patients (DCM; 48 ± 15 years, 29 women), and 81 survivors of acute myocardial infarction (AMI; 63 ± 12 years, 20 women) had digital 12-lead resting supine ECGs recorded (10 ECGs recorded in each subject and results averaged). In each ECG lead, QT interval was measured under operator review by QT Guard (GE Marquette) to obtain QTd. QTd was expressed as the range, standard deviation, and highest-to-lowest quartile difference of QT interval in all measurable leads. Singular value decomposition transferred ECGs into a minimum dimensional time orthogonal space. The first three components represented the ECG dipole; other components represented nondipolar signals. The power of the T wave nondipolar within the total components was computed to measure spatial repolarization heterogeneity (relative T wave residuum, TWR). OTd was 33.6 ± 18.3, 47.0 ± 19.3, 34.8 ± 21.2, and 57.5 ± 25.3 msec in normals, HCM, CM, and AMI, respectively (normals vs DCM: NS, other P < 0.009). TWR was 0.029%± 0.031%, 0.067%± 0.067%, 0.112%± 0.154%, and 0.186%± 0.308% in normals, HCM, DCM, and AMI (HCM vs DCM: NS. other P < 0.006), The correlations between QTd and TWR were r = -0.0446, 0.2805, -0.1531, and 0.0771 (P = 0.03 for HCM, other NS) in normals, HCM, DCM, and AMI, respectively. Conclusion: Spatial heterogeneity of ventricular repolarization exists and is measurable in 12-lead resting ECGs. It differs between different clinical groups, but the so-called QT dispersion is unrelated to it. [source]


Colour variation and alternative reproductive strategies in females of the common lizard Lacerta vivipara

JOURNAL OF EVOLUTIONARY BIOLOGY, Issue 1 2007
E. VERCKEN
Abstract Within-sex colour variation is a widespread phenomenon in animals that often plays a role in social selection. In males, colour variation is typically associated with the existence of alternative reproductive strategies. Despite ecological conditions theoretically favourable to the emergence of such alternative strategies in females, the social significance of colour variation in females has less commonly been addressed, relative to the attention given to male strategies. In a population of the common lizard, females display three classes of ventral colouration: pale yellow, orange and mixed. These ventral colours are stable through individual's life and maternally heritable. Females of different ventral colourations displayed different responses of clutch size, clutch hatching success and clutch sex-ratio to several individual and environmental parameters. Such reaction patterns might reflect alternative reproductive strategies in females. Spatial heterogeneity and presence of density- and frequency-dependent feedbacks in the environment could allow for the emergence of such alternative strategies in this population and the maintenance of colour variation in females. [source]


The effects of water retention time and watershed features on the limnology of two tropical reservoirs in Brazil

LAKES & RESERVOIRS: RESEARCH AND MANAGEMENT, Issue 4 2008
Maria Carolina S. Soares
Abstract Although reservoirs are similar to natural lakes in many respects, such driving forces as water retention time and watershed features can play important roles in the limnology of manmade lakes. With the goal of investigating how these factors influence the limnology of tropical reservoirs, physical and chemical variables were measured at four sampling sites in two reservoirs in southern Brazil, from June 2002 to June 2003. Funil Reservoir is located in one of the most-populated areas in the country, in the Paraíba do Sul river basin, which drains and drastically influences the water quality of the reservoir. In contrast, Lajes Reservoir is located in a well-preserved area, with its water retention time varying from six to 30 times longer than for Funil Reservoir. Funil Reservoir is a turbid (median euphotic zone = 4.3 m), eutrophic reservoir (median total phosphorus (TP) = 3.1 µm), with a high phytoplankton biomass (median chlorophyll- a concentration = 10.0 µg L,1). In contrast, Lajes Reservoir is a transparent (median euphotic zone = 9.2 m), mesotrophic water system (median TP = 1.0 µm), with a low phytoplankton biomass (median chlorophyll- a = 1.9 µg L,1). Both reservoirs were stratified during the summer months, but isothermy was only observed in Funil Reservoir. Because of its short water retention time, Funil Reservoir is a much more dynamic system than Lajes Reservoir, with a pronounced temporal pattern related to changes in its water column and its phytoplankton biomass. Spatial heterogeneity is more evident in Lajes Reservoir, mainly as a consequence of its location in a preserved area, long water retention time and the presence of net cages for fish culture in the waterbody. The typical spatial zonation found in reservoirs, related to nutrient sedimentation and light availability, however, is more evident in Funil Reservoir than in Lajes Reservoir. Despite the similarities between these two water systems, which are in the same geographical region with similar climate, and are comparable in size, the distinct watershed features and water retention time are responsible for marked differences between these reservoirs. [source]


Identification and significance of sources of spatial variation in grapevine water status

AUSTRALIAN JOURNAL OF GRAPE AND WINE RESEARCH, Issue 1 2010
J.A. TAYLOR
Abstract Background and Aims:, Water stress in grapevines is directly linked to grape quality. Differential vine water management should therefore be strongly linked to the water stress in the vine. To do this, an understanding of the dominant drivers and indicators of vine water status are needed from a sub-block to whole vineyard level. This understanding will help generate effective vine water status models for variable rate irrigation systems. Methods and Results:, A vineyard in the south of France was sampled for pre-dawn leaf water potential (,PD) at several dates during the growing season for two consecutive years. Sampling was stratified by soil types and relative within-block vegetative expression. A recursive partitioning analysis identified that cultivar had a dominant effect at low water stress, while vegetative expression and then soil unit effects became dominant as water restriction increased. Variance in ,PD was calculated at difference scales (plant, site, block and vineyard) and Smith's heterogeneity law was used to evaluate the scalar nature of ,PD variance. Spatial heterogeneity increased as the season and water restriction increased. Conclusion:, Variance in ,PD changed temporally through a season and the dominant drivers/indicators also changed. The opportunity to spatially manage water stress (irrigation) increased as water restriction increased. Significance of the Study:, Managing vine water stress helps optimise production and a ,PD model would be a useful addition to a viticulture decision support system. This study identified how the variance in ,PD evolved during a season and the best ancillary indicators of ,PD for spatial and temporal modelling. [source]


The geography of climate change: implications for conservation biogeography

DIVERSITY AND DISTRIBUTIONS, Issue 3 2010
D. D. Ackerly
Abstract Aim, Climate change poses significant threats to biodiversity, including impacts on species distributions, abundance and ecological interactions. At a landscape scale, these impacts, and biotic responses such as adaptation and migration, will be mediated by spatial heterogeneity in climate and climate change. We examine several aspects of the geography of climate change and their significance for biodiversity conservation. Location, California and Nevada, USA. Methods, Using current climate surfaces (PRISM) and two scenarios of future climate (A1b, 2070,2099, warmer-drier and warmer-wetter), we mapped disappearing, declining, expanding and novel climates, and the velocity and direction of climate change in California and Nevada. We also examined fine-scale spatial heterogeneity in protected areas of the San Francisco Bay Area in relation to reserve size, topographic complexity and distance from the ocean. Results, Under the two climate change scenarios, current climates across most of California and Nevada will shrink greatly in extent, and the climates of the highest peaks will disappear from this region. Expanding and novel climates are projected for the Central Valley. Current temperature isoclines are projected to move up to 4.9 km year,1 in flatter regions, but substantially slower in mountainous areas because of steep local topoclimate gradients. In the San Francisco Bay Area, climate diversity within currently protected areas increases with reserve size and proximity to the ocean (the latter because of strong coastal climate gradients). However, by 2100 of almost 500 protected areas (>100 ha), only eight of the largest are projected to experience temperatures within their currently observed range. Topoclimate variability will further increase the range of conditions experienced and needs to be incorporated in future analyses. Main Conclusions, Spatial heterogeneity in climate, from mesoclimate to topoclimate scales, represents an important spatial buffer in response to climate change, and merits increased attention in conservation planning. [source]


The role of vegetation patterns in structuring runoff and sediment fluxes in drylands

EARTH SURFACE PROCESSES AND LANDFORMS, Issue 2 2005
Juan Puigdefábregas
Abstract The dynamics of vegetation-driven spatial heterogeneity (VDSH) and its function in structuring runoff and sediment fluxes have received increased attention from both geomorphological and ecological perspectives, particularly in arid regions with sparse vegetation cover. This paper reviews the recent findings in this area obtained from field evidence and numerical simulation experiments, and outlines their implications for soil erosion assessment. VDSH is often observed at two scales, individual plant clumps and stands of clumps. At the patch scale, the local outcomes of vegetated patches on soil erodibility and hydraulic soil properties are well established. They involve greater water storage capacity as well as increased organic carbon and nutrient inputs. These effects operate together with an enhanced capacity for the interception of water and windborne resources, and an increased biological activity that accelerates breakdown of plant litter and nutrient turnover rates. This suite of relationships, which often involve positive feedback mechanisms, creates vegetated patches that are increasingly different from nearby bare ground areas. By this way a mosaic builds up with bare ground and vegetated patches coupled together, respectively, as sources and sinks of water, sediments and nutrients. At the stand scale within-storm temporal variability of rainfall intensity controls reinfiltration of overland flow and its decay with slope length. At moderate rainfall intensity, this factor interacts with the spatial structure of VDSH and the mechanism of overland flow generation. Reinfiltration is greater in small-grained VDSH and topsoil saturation excess overland flow. Available information shows that VDSH structures of sources and sinks of water and sediments evolve dynamically with hillslope fluxes and tune their spatial configurations to them. Rainfall simulation experiments in large plots show that coarsening VDSH leads to significantly greater erosion rates even under heavy rainfall intensity because of the flow concentration and its velocity increase. Copyright © 2005 John Wiley & Sons, Ltd. [source]


Spatial and temporal hotspots of termite-driven decomposition in the Serengeti

ECOGRAPHY, Issue 3 2010
Bernd P. Freymann
Ecosystem engineers are organisms that directly or indirectly control the availability of resources to other organisms by causing physical state changes in biotic or abiotic materials. Termites (Insecta, Isoptera) are among the most important ecosystem engineers in tropical ecosystems. We used a field experiment in the tall grasslands of Serengeti National Park, Tanzania, to investigate 1) the consumption by termites of grass litter and dung baits along the landscape gradient of catena position, and 2) seasonal variation in litter and dung removal. Our maps of termitaria and patterns of bait removal revealed clear spatial and temporal hotspots of termite activity. In the dry season termites removed more baits at the top-catena positions than at the bottom positions, but there was no effect of catena position in the wet season. Spatial hotspots of termite activity overlapped with those of both mammalian herbivores and predators. Within the framework of ecosystem engineering, this study suggests that intraspecific aspects of spatial heterogeneity and temporal variability deserve much greater consideration. [source]


Plant species richness and environmental heterogeneity in a mountain landscape: effects of variability and spatial configuration

ECOGRAPHY, Issue 4 2006
Alexia Dufour
The loss of biodiversity has become a matter of urgent concern and a better understanding of local drivers is crucial for conservation. Although environmental heterogeneity is recognized as an important determinant of biodiversity, this has rarely been tested using field data at management scale. We propose and provide evidence for the simple hypothesis that local species diversity is related to spatial environmental heterogeneity. Species partition the environment into habitats. Biodiversity is therefore expected to be influenced by two aspects of spatial heterogeneity: 1) the variability of environmental conditions, which will affect the number of types of habitat, and 2) the spatial configuration of habitats, which will affect the rates of ecological processes, such as dispersal or competition. Earlier, simulation experiments predicted that both aspects of heterogeneity will influence plant species richness at a particular site. For the first time, these predictions were tested for plant communities using field data, which we collected in a wooded pasture in the Swiss Jura mountains using a four-level hierarchical sampling design. Richness generally increased with increasing environmental variability and "roughness" (i.e. decreasing spatial aggregation). Effects occurred at all scales, but the nature of the effect changed with scale, suggesting a change in the underlying mechanisms, which will need to be taken into account if scaling up to larger landscapes. Although we found significant effects of environmental heterogeneity, other factors such as history could also be important determinants. If a relationship between environmental heterogeneity and species richness can be shown to be general, recently available high-resolution environmental data can be used to complement the assessment of patterns of local richness and improve the prediction of the effects of land use change based on mean site conditions or land use history. [source]


Assessing the influence of environmental heterogeneity on bird spacing patterns: a case study with two raptors

ECOGRAPHY, Issue 2 2006
Thomas Cornulier
Testing for aggregation or regularity in point patterns is difficult in the presence of spatial variation in abundance due to environmental heterogeneity. Using a recently developed method generalizing Ripley's K function for non homogeneous point patterns, we test the aggregation of the nests in two species of birds (little owl and Montagu's harrier) exhibiting heterogeneous distributions in response to landscape structure. We compare the results obtained under different null models accounting for environmental heterogeneity at large and/or small spatial scales. Whereas both species were initially found to form clusters at some scale, taking spatial heterogeneity into account revealed that 1) territorial little owls showed no clustering of territories when habitat availability was considered; 2) semi-colonial harriers still formed significant clusters, but part of the aggregation in this species could be explained by landscape structure alone. Our results highlight that it is feasible and highly recommended to account for non-stationarity when testing for aggregation. Further, provided that sufficient knowledge of the study system is available, this approach helps to identify behavioural and environmental components of spatial variation in abundance. Additionally, we demonstrate that accounting for large or small-scale heterogeneity affects the perception of spacing behaviours differently, so that both need to be considered. [source]


Relationships between spatial environmental heterogeneity and plant species diversity on a limestone pavement

ECOGRAPHY, Issue 6 2003
Jeremy T. Lundholm
No empirical studies have examined the relationship between diversity and spatial heterogeneity across unimodal species richness gradients. We determined the relationships between diversity and environmental factors for 144 0.18 m2 plots in a limestone pavement alvar in southern Ontario, Canada, including within-plot spatial heterogeneity in soil depth, microtopography and microsite composition. Species richness was unimodally related to mean soil depth and relative elevation. Microsite heterogeneity and soil depth heterogeneity were positively correlated with species richness, and the richness peaks of the unimodal gradients correspond to the maximally spatially heterogeneous plots. The best predictive models of species richness and evenness, however, showed that other factors, such as ramet density and flooding, are the major determinants of diversity in this system. The findings that soil depth heterogeneity had effects on diversity when the effects of mean soil depth were factored out, and that unimodal richness peaks were associated with high spatial heterogeneity in environmental factors represent significant contributions to our understanding of how spatial heterogeneity might contribute to diversity maintenance in plant communities. [source]


Anthropogenic impacts upon plant species richness and net primary productivity in California

ECOLOGY LETTERS, Issue 2 2005
John W. Williams
Abstract We assess the importance of anthropogenic land-use, altered productivity, and species invasions for observed productivity,richness relationships in California. To this end, we model net primary productivity (NPP) c. 1750 AD and at present (1982,1999) and map native and exotic vascular plant richness for 230 subecoregions. NPP has increased up to 105% in semi-arid areas and decreased up to 48% in coastal urbanized areas. Exotic invasions have increased local species diversity up to 15%. Human activities have reinforced historical gradients in species richness but reduced the spatial heterogeneity of NPP. Structural equation modelling suggests that, prior to European settlement, NPP and richness were primarily controlled by precipitation and other abiotic variables, with NPP mediating richness. Abiotic variables remain the strongest predictors of present NPP and richness, but intermodel comparisons indicate a significant anthropogenic impact upon statewide distributions of NPP and richness. Exotic and native species each positively correlate to NPP after controlling for other variables, which may help explain recent reports of positively associated native and exotic richness. [source]


The spatial spread of invasions: new developments in theory and evidence

ECOLOGY LETTERS, Issue 1 2005
Alan Hastings
Abstract We review and synthesize recent developments in the study of the spread of invasive species, emphasizing both empirical and theoretical approaches. Recent theoretical work has shown that invasive species spread is a much more complex process than the classical models suggested, as long range dispersal events can have a large influence on the rate of range expansion through time. Empirical work goes even further, emphasizing the role of spatial heterogeneity, temporal variability, other species, and evolution. As in some of the classic work on spread, the study of range expansion of invasive species provides unique opportunities to use differences between theory and data to determine the important underlying processes that control spread rates. [source]


Competitive coexistence in spatially structured environments: a synthesis

ECOLOGY LETTERS, Issue 12 2003
Priyanga Amarasekare
Abstract Theoretical developments in spatial competitive coexistence are far in advance of empirical investigations. A framework that makes comparative predictions for alternative hypotheses is a crucial element in narrowing this gap. This review attempts to synthesize spatial competition theory into such a framework, with the goal of motivating empirical investigations that adopt the comparative approach. The synthesis presented is based on a major axis, coexistence in spatially homogeneous vs. heterogeneous competitive environments, along which the theory can be organized. The resulting framework integrates such key concepts as niche theory, spatial heterogeneity and spatial scale(s) of coexistence. It yields comparative predictions that can guide empirical investigations. [source]


Spatial variation of metals and acid volatile sulfide in floodplain lake sediment

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 3 2003
Corine van Griethuysena
Abstract In risk assessment of aquatic sediments, much attention is paid to the immobilizing effect of acid volatile sulfide (AVS) on trace metals. The difference of AVS and simultaneously extracted metals (SEM) gives an indication of metal availability. In floodplain sediments, where changing redox conditions occur. AVS may play a major role in determining variation in metal availability. The importance of spatial heterogeneity has been recognized in risk assessment of trace-metal-polluted sediments. However, little is known about spatial variation of available metal fractions. We studied spatial variability of sediment, environmental conditions, total contaminant concentrations, and available metals (as SEM-AVS or SEM-AVS/fOC) in a floodplain lake. The top 5 cm of sediment was sampled at 43 locations. Data were analyzed with correlation and principal component analysis as well as with geostatistical methods. Trace metal and SEM concentrations and most sediment characteristics were more or less constant within 10%. In contrast, AVS concentrations were much more variable and showed a strong spatial dependence due to differences in lake depth, total sulfur pools, and redox potential (Eh), which resulted in crucial differences in trace-metal availability within the lake. The spatial pattern of SEM-AVS deviates from total or normalized trace-metal patterns. This particularly has implications for risk assessment of sediments prone to dynamic hydrological conditions, where AVS concentrations are also variable in time. [source]


Simulating the spatial distribution of clay layer occurrence depth in alluvial soils with a Markov chain geostatistical approach

ENVIRONMETRICS, Issue 1 2010
Weidong Li
Abstract The spatial distribution information of clay layer occurrence depth (CLOD), particularly the spatial distribution maps of occurrence of clay layers at depths less than a certain threshold, in alluvial soils is crucial to designing appropriate plans and measures for precision agriculture and environmental management in alluvial plains. Markov chain geostatistics (MCG), which was proposed recently for simulating categorical spatial variables, can objectively decrease spatial uncertainty and consequently increase prediction accuracy in simulated results by using nonlinear estimators and incorporating various interclass relationships. In this paper, a MCG method was suggested to simulate the CLOD in a meso-scale alluvial soil area by encoding the continuous variable with several threshold values into binary variables (for single thresholds) or a multi-class variable (for all thresholds being considered together). Related optimal prediction maps, realization maps, and occurrence probability maps for all of these indicator-coded variables were generated. The simulated results displayed the spatial distribution characteristics of CLOD within different soil depths in the study area, which are not only helpful to understanding the spatial heterogeneity of clay layers in alluvial soils but also providing valuable quantitative information for precision agricultural management and environmental study. The study indicated that MCG could be a powerful method for simulating discretized continuous spatial variables. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Empirical Bayes estimators and non-parametric mixture models for space and time,space disease mapping and surveillance

ENVIRONMETRICS, Issue 5 2003
Dankmar Böhning
Abstract The analysis of the geographic variation of disease and its representation on a map is an important topic in epidemiological research and in public health in general. Identification of spatial heterogeneity of relative risk using morbidity and mortality data is required. Frequently, interest is also in the analysis of space data with respect to time, where typically data are used which are aggregated in certain time windows like 5 or 10 years. The occurrence measure of interest is usually the standardized mortality (morbidity) ratio (SMR). It is well known that disease maps in space or in space and time should not solely be based upon the crude SMR but rather some smoothed version of it. This fact has led to a tremendous amount of theoretical developments in spatial methodology, in particular in the area of hierarchical modeling in connection with fully Bayesian estimation techniques like Markov chain Monte Carlo. It seems, however, that at the same time, where these theoretical developments took place, on the practical side only very few of these developments have found their way into daily practice of epidemiological work and surveillance routines. In this article we focus on developments that avoid the pitfalls of the crude SMR and simultaneously retain a simplicity and, at least approximately, the validity of more complex models. After an illustration of the typical pitfalls of the crude SMR the article is centered around three issues: (a) the separation of spatial random variation from spatial structural variation; (b) a simple mixture model for capturing spatial heterogeneity; (c) an extension of this model for capturing temporal information. The techniques are illustrated by numerous examples. Public domain software like Dismap is mentioned that enables easy mixture modeling in the context of disease mapping. Copyright © 2003 John Wiley & Sons, Ltd. [source]


Recolonisation of natural landslides in tropical mountain forests of Southern Ecuador

FEDDES REPERTORIUM, Issue 3-4 2004
(corresp. author) C. Ohl Dr.
The regeneration of the vegetation of natural landslides was studied at Estación Científica San Francisco (ECSF) in a tropical mountain forest area of Southern Ecuador, north of Podocarpus National Park. The study focused on the process of regeneration on natural landslides and the vegetation change along an altitudinal gradient using space-for-time substitution. The most important plant families present on the landslides during the first stages of succession are Gleicheniaceae (Pteridophyta), Melastomataceae, Ericaceae and Orchidaceae. Species of the genus Sticherus (Gleicheniaceae) are dominant, and species composition varies with altitude and soil conditions. Colonisation of landslides is not homogeneous. Zones with bare ground, sparsely vegetated patches and densely covered areas may be present within the same slide. This small scale spatial heterogeneity is often created by local ongoing sliding processes and different distances towards undisturbed areas. Therefore, the duration of the successional process is highly variable. The initial stage of the succession is a community of non vascular plants interspersed with scattered individuals of vascular plants. By means of runner-shoots they form vegetation patches which start growing into each other. The second stage is dominated by Gleicheniaceae (species composition varying in altitude and soil chemistry). In the third stage, bushes and trees colonise, sheltered by the ferns, and a secondary forest develops with pioneer species that are not found in the primary forest vegetation. The common phenomenon of the natural landslides leads to an increase in structural and species diversity on a regional scale. (© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) Rekolonisation auf natürlichen Hangrutschungen in tropischen Bergwäldern Südecuadors Im tropischen Bergwald Südecuadors (nördlich des Podocarpus Nationalparks im Gebiet der Estación Científica San Francisco, ECSF) wurden Artenzusammensetzung und Rekolonisationsprozesse früher Sukzessionsstadien entlang eines Höhengradienten auf natürlichen Hangrutschungen untersucht. Besonders Gleicheniaceae, Melastomataceae, Ericaceae und Orchidaceae sind von Bedeutung. Arten der Gattung Sticherus (Gleicheniaceae) sind sehr zahlreich vertreten. Die Artenzusammensetzung wechselt entlang des Höhengradienten und in Abhängigkeit von den Bodenbedingungen. Die mosaikartige Verteilung der Vegetation auf den Rutschungen (gänzlich unbedeckte bis stark überwucherte Zonen) ist auf häufige lokale Nachrutschungen sowie auf unterschiedliche Geschwindigkeiten der Wiederbesiedlung entsprechend der Distanz zu ungestörter Vegetation zurückzuführen. Die Dauer der Sukzession ist daher sehr variabel. Das Initialstadium wird von Moosen und Flechten gebildet. Im weiteren Verlauf führt die überwiegend vegetative Ausbreitung einzelner Gefäßpflanzen zum zweiten Sukzessionsstadium. Dieses ist durch die Dominanz von Gleicheniaceae gekennzeichnet, während im dritten Stadium im Schutze der Farne erste Büsche und Bäume heranwachsen und den Pionierwald bilden. Da diese Arten nicht im Primärwald vertreten sind, kommt es regional zu einer beträchtlichen Erhöhung der Artenzahl und der strukturellen Diversität. [source]


Microbial degradation of isoproturon and related phenylurea herbicides in and below agricultural fields

FEMS MICROBIOLOGY ECOLOGY, Issue 1 2003
Sebastian R Sørensen
Abstract The phenylurea herbicides are an important group of pesticides used extensively for pre- or post-emergence weed control in cotton, fruit and cereal crops worldwide. The detection of phenylurea herbicides and their metabolites in surface and ground waters has raised the awareness of the important role played by agricultural soils in determining water quality. The degradation of phenylurea herbicides following application to agricultural fields is predominantly microbial. However, evidence suggests a slow degradation of the phenyl ring, and substantial spatial heterogeneity in the distribution of active degradative populations, which is a key factor determining patterns of leaching losses from agricultural fields. This review summarises current knowledge on the microbial metabolism of isoproturon and related phenylurea herbicides in and below agricultural soils. It addresses topics such as microbial degradation of phenylurea herbicides in soil and subsurface environments, characteristics of known phenylurea-degrading soil micro-organisms, and similarities between metabolic pathways for different phenylurea herbicides. Finally, recent studies in which molecular and microbiological techniques have been used to provide insight into the in situ microbial metabolism of isoproturon within an agricultural field will be discussed. [source]


Microbial biodiversity in groundwater ecosystems

FRESHWATER BIOLOGY, Issue 4 2009
C. GRIEBLER
Summary 1. Groundwater ecosystems offer vast and complex habitats for diverse microbial communities. Here we review the current status of groundwater microbial biodiversity research with a focus on Bacteria and Archaea and on the prospects of modern techniques for enhancing our understanding of microbial biodiversity patterns and their relation to environmental conditions. 2. The enormous volume of the saturated terrestrial underground forms the largest habitat for microorganisms on earth. Up to 40% of prokaryotic biomass on earth is hidden within this terrestrial subsurface. Besides representing a globally important pool of carbon and nutrients in organisms, these communities harbour a degree of microbial diversity only marginally explored to date. 3. Although first observations of groundwater microbiota date back to Antonie van Leeuwenhoek in 1677, the systematic investigation of groundwater microbial biodiversity has gained momentum only within the last few decades. These investigations were initiated by an increasing awareness of the importance of aquifer microbiota for ecosystem services and functioning, including the provision of drinking water and the degradation of contaminants. 4. The development of sampling techniques suitable for microbiological investigations as well as the application of both cultivation-based and molecular methods has yielded substantial insights into microbial communities in contaminated aquifers, whereas knowledge of microbial biodiversity in pristine habitats is still poor at present. 5. Several novel phylogenetic lineages have been described from groundwater habitats, but to date no clearly ,endemic' subsurface microbial phyla have been identified. The future will show if the rather low diversity generally found in pristine oligotrophic aquifers is a fact or just a result of low abundances and insufficient resolution of today's methods. Refined approaches complemented by statistically rigorous applications of biodiversity estimates are urgently needed. 6. Factors identified to control microbial diversity in aquifers include spatial heterogeneity, temporal variability and disturbances such as pollution with chemical anthropogenic contaminants. Although first insights into the importance of individual biogeochemical processes may be obtained from surveys of microbial diversity within functional groups, direct links to groundwater ecosystem functioning have rarely been established so far. [source]


Habitat selection and diel distribution of the crustacean zooplankton from a shallow Mediterranean lake during the turbid and clear water phases

FRESHWATER BIOLOGY, Issue 3 2007
BRUNO B. CASTRO
Summary 1. The fish fauna of many shallow Mediterranean Lakes is dominated by small-bodied exotic omnivores, with potential implications for fish,zooplankton interactions still largely unknown. Here we studied diel variation in the vertical and horizontal distribution of the crustacean plankton in Lake Vela, a shallow polymictic and eutrophic lake. Diel sampling was carried out on three consecutive days along a horizontal transect, including an open-water station and a macrophyte (Nymphaea alba) bed. Since transparency is a key determinant of the predation risk posed by fish, the zooplankton sampling campaigns were conducted in both the turbid (autumn) and clear water (spring) phases. 2. In the turbid phase, most taxa were homogeneously distributed along the vertical and horizontal axes in the three consecutive days. The only exception was for copepod nauplii, which showed vertical heterogeneity, possibly as a response to invertebrate predators. 3. In the clear water phase, most zooplankton taxa displayed habitat selection. Vertically, the general response consisted of a daily vertical migration (DVM), despite the limited depth (1.6 m). Horizontally, zooplankters showed an overall preference for the pelagic zone, independent of the time of the day. Such evidence is contrary to the postulated role of macrophytes as an anti-predator refuge for the zooplankton. 4. These vertical (DVM) and horizontal (macrophyte-avoidance) patterns were particularly conspicuous for large Daphnia, suggesting that predation risk from size-selective predators (fish) was the main factor behind the spatial heterogeneity of zooplankton in the spring. Thus, the difference in the zooplankton spatial distribution pattern and habitat selection among seasons (turbid and clear water phases) seems to be mediated the predation risk from fish, which is directly related to water transparency. 5. The zooplankton in Lake Vela have anti-predator behaviour that minimises predation from fish. We hypothesise that, due to the distinct fish community of shallow Mediterranean lakes, aquatic macrophytes may not provide adequate refuge to zooplankters, as seen in northern temperate lakes. [source]


Factors influencing the temporal coherence of five lakes in the English Lake District

FRESHWATER BIOLOGY, Issue 3 2000
D. G. George
1. The lakes in the Windermere catchment are all deep, glacial lakes but they differ in size, shape and general productivity. Here, we examine the extent to which year-to-year variations in the physical, chemical and biological characteristics of these lakes varied synchronously over a 30,40-year period. 2. Coherence was estimated by correlating time-series of the spring, summer, autumn and winter characteristics of five lakes: Esthwaite Water, Blelham Tarn, Grasmere and the North and South Basins of Windermere. Three physical, four chemical and two biological time-series were analysed and related to year-to-year variations in a number of key driving variables. 3. The highest levels of coherence were recorded for the physical and chemical variables where the average coherence was 0.81. The average coherence for the biological variables was 0.11 and there were a number of significant negative relationships. The average coherence between all possible lake pairs was 0.59 and average values ranged from 0.50 to 0.74. A graphical analysis of these results demonstrated that the coherence between individual lake pairs was influenced by the relative size of the basins as well as their trophic status. 4. A series of examples is presented to demonstrate how a small number of driving variables influenced the observed levels of coherence. These range from a simple example where the winter temperature of the lakes was correlated with the climatic index known as the North Atlantic Oscillation, to a more complex example where the summer abundance of zooplankton was correlated with wind-mixing. 5. The implications of these findings are discussed and a conceptual model developed to illustrate the principal factors influencing temporal coherence in lake systems. The model suggests that our ability to detect temporal coherence depends on the relative magnitude of three factors: (a) the amplitude of the year-to-year variations; (b) the spatial heterogeneity of the driving variables and (c) the error terms associated with any particular measurement. [source]


From ancient genes to modern communities: the cellular stress response and the evolution of plant strategies

FUNCTIONAL ECOLOGY, Issue 5 2005
S. PIERCE
Summary 1Two major plant strategy theories attempt to explain how phenotype determines community structure. Crucially, CSR plant strategy theory suggests that stress and sporadic resource availability favour conservative phenotypes, whereas the resource-ratio hypothesis views the spatial heterogeneity of resources as selecting for optimal foraging in chronically unproductive habitats. Which view is most realistic? 2The ecophysiology literature demonstrates that stress is comprised of two processes: (1) limitation of resource supply to metabolism; and (2) damage to biomembranes, proteins and genetic material (chronic stress). Thus stress is defined mechanistically as the suboptimal performance of metabolism. 3Adaptations to limitation buffer metabolism against variability in external resource supply; internal storage pools are more consistent. Chronic stress elicits the same ancient cellular stress response in all cellular life: investment in stress metabolites that preserve the integrity and compartmentalization of metabolic components in concert with molecular damage-repair mechanisms. 4The cellular stress response was augmented by morphological innovations during the Silurian,Devonian terrestrial radiation, during which nutrient limitation appears to have been a principal selection pressure (sensu CSR theory). 5The modern stress,tolerator syndrome is conservative and supports metabolism in limiting or fluctuating environmental conditions: standing resource pools with high investment/maintenance costs impose high internal diffusion resistances and limit inherent growth rate (sensu CSR theory). 6The resource-ratio hypothesis cannot account for the cellular stress response or the crucial role of ombrotrophy in primary succession. CSR theory agrees with current understanding of the cellular stress response, terrestrial radiation and modern adaptations recorded in chronically unproductive habitats, and is applicable as CSR classification. [source]


Competition for light and nitrogen among grassland species: a simulation analysis

FUNCTIONAL ECOLOGY, Issue 2 2001
Schippers P.
Abstract 1.,A plant competition model to analyse the competition among perennial grassland species was developed. It was used to find out whether complex perennial competition processes could be simulated accurately on the basis of ecophysiological principles; what crucial parameters and processes determine succession; and how spatial heterogeneity affects interspecies competition for light and nitrogen. 2.,Simulation results were compared with results of a 2-year replacement experiment involving Holcus lanatus, Anthoxanthum odoratum and Festuca ovina. Sensitivity analyses were performed to evaluate the importance of processes and parameters. 3.,The model's sensitivity to plant height, specific leaf area and turnover and the large interspecific differences indicated that these were key determinants of competition between species. Festuca's low shoot turnover enabled it to survive the winter better and gave it an advantage in spring; this resulted in an unexpected recovery after winter in the second year. 4.,Spatially explicit simulations showed that species patchiness reduced competitive asymmetry, especially under nutrient-poor conditions. 5.,The model's ability to simulate complex perennial competition processes as observed in the experiment indicates its potential for analysing vegetation processes related to succession. [source]


Petrography and provenance of Laecanius Amphorae from Istria, northern Adriatic region, Croatia

GEOARCHAEOLOGY: AN INTERNATIONAL JOURNAL, Issue 5 2006
Maria A. Mange
Amphorae sherds from the Laecanius workshop of Roman Istria (10,5 B.C. and 78 A.D.), Croatia, were studied by integrating archaeological and geological techniques including fabric analysis, thin-section petrography, X-ray diffractometry (XRD), and heavy mineral analysis. The fabric of the sherds showed distinctive characteristics, permitting their classification and allocation into nine fabric groupss. Petrography revealed that quartz is the dominant clastic component, whereas carbonate is common as temper; XRD provided information on firing temperatures that ranged between 750 and 900°C. The sherds contain diverse heavy mineral suites with generally high epidote and garnet proportions; zircon is occasionally important. Garnet/epidote ratios and the presence of diagnostic species (pyroxene, hornblende) showed systematic variations that coincided with similar variations in fabric characteristics. Heavy mineral signatures of amphorae produced in other workshops proved essential in differentiating them from Laecanius sherds. A comparative heavy mineral analysis of terra rossa samples from the vicinity of the workshop indicated that terra rossa was the major source for the paste. Differences observed in the heavy mineral composition of the sherds and terra rossa were interpreted by the spatial heterogeneity of the latter and the mixing of the paste with sandy temper. Fresh Adriatic sponge spicules in the majority of Laecanius sherds and the temper-derived, generally immature heavy mineral assemblages suggest that sandy deposits from the Adriatic were used for the clastic temper. © 2006 Wiley Periodicals, Inc. [source]