Home About us Contact | |||
Sphingolipid Biosynthesis (sphingolipid + biosynthesis)
Selected AbstractsInduction of Cell Wall Thickening by the Antifungal Compound Dihydromaltophilin Disrupts Fungal Growth and is Mediated by Sphingolipid BiosynthesisTHE JOURNAL OF EUKARYOTIC MICROBIOLOGY, Issue 2 2009SHAOJIE LI ABSTRACT. Dihydromaltophilin (heat-stable antifungal factor [HSAF]) is an antifungal metabolite produced in Lysobacter enzymogenes biocontrol strain C3. This compound induces cell wall thickening in Aspergillus nidulans. Here we show that the cell wall thickening is a general response to HSAF in diverse fungal species. In the A. nidulans model, the thickened cell wall negatively affects hyphal growth. Growth of HSAF-pre-treated hyphae failed to resume at hyphal tips with thick cell wall and the actin cable could not re-polarize at the thickened region of the cell wall, even after the treated hyphae were transferred to drug-free medium. Moreover, HSAF-induced cell wall thickening is mediated by sphingolipid synthesis: HSAF failed to induce cell wall thickening in the absence of ceramide synthase BarA and the sphingolipid synthesis inhibitor myriocin was able to suppress HSAF-induced cell wall thickening. The thickened cell wall could be digested by chitinase suggesting that chitin contributes to the HSAF-induced thickening. Furthermore, HSAF treatment activated the transcription of two chitin synthase encoding genes chsB and chsC. [source] Rafts and sphingolipid biosynthesis in the kinetoplastid parasitic protozoaMOLECULAR MICROBIOLOGY, Issue 3 2004Paul W. Denny Summary Although the concept of eukaryotic lipid rafts arouses controversy, recent biophysical studies strongly indicate that inducible, stable and relatively large rafts are a feature of activated mammalian cells. These studies allow us to consider the functional role of lipid rafts in kinetoplastid parasites, which are particularly rich in lipid-anchored surface molecules. Morphological, biochemical and genetic studies indicate that lipid rafts (and sphingolipid biosythesis) are important in the differentiation of extracellular Leishmania to mammalian-infective metacyclic promastigotes, perhaps orchestrating the clearly observable reorganization of the plasma membrane during this process that leads to an activated metacyclic primed for invasion. However, the first step in the sphingolipid biosynthetic pathway (mediated by serine palmitoyltransferase), and at least regulated, de novo sphingoid base and ceramide synthesis, are not essential for the pathogenesis of intramacrophage Leishmania amastigotes. [source] Loss-of-function mutations and inducible RNAi suppression of Arabidopsis LCB2 genes reveal the critical role of sphingolipids in gametophytic and sporophytic cell viabilityTHE PLANT JOURNAL, Issue 2 2008Charles R. Dietrich Summary Serine palmitoyltransferase (SPT) catalyzes the first step in sphingolipid biosynthesis, and downregulation of this enzyme provides a means for exploring sphingolipid function in cells. We have previously demonstrated that Arabidopsis SPT requires LCB1 and LCB2 subunits for activity, as is the case in other eukaryotes. In this study, we show that Arabidopsis has two genes (AtLCB2a and AtLCB2b) that encode functional isoforms of the LCB2 subunit. No alterations in sphingolipid content or growth were observed in T-DNA mutants for either gene, but homozygous double mutants were not recoverable, suggesting that these genes are functionally redundant. Reciprocal crosses conducted with Atlcb2a and Atlcb2b mutants indicated that lethality is associated primarily with the inability to transmit the lcb2 null genotype through the haploid pollen. Consistent with this, approximately 50% of the pollen obtained from plants homozygous for a mutation in one gene and heterozygous for a mutation in the second gene arrested during transition from uni-nucleate microspore to bicellular pollen. Ultrastructural analyses revealed that these pollen grains contained aberrant endomembranes and lacked an intine layer. To examine sphingolipid function in sporophytic cells, Arabidopsis lines were generated that allowed inducible RNAi silencing of AtLCB2b in an Atlcb2a mutant background. Studies conducted with these lines demonstrated that sphingolipids are essential throughout plant development, and that lethality resulting from LCB2 silencing in seedlings could be partially rescued by supplying exogenous long-chain bases. Overall, these studies provide insights into the genetic and biochemical properties of SPT and sphingolipid function in Arabidopsis. [source] The serine palmitoyltransferase from Sphingomonas wittichii RW1: An interesting link to an unusual acyl carrier proteinBIOPOLYMERS, Issue 9 2010Marine C. C. Raman Abstract Serine palmitoyltransferase (SPT) catalyses the first step in the de novo biosynthesis of sphingolipids (SLs). It uses a decarboxylative Claisen-like condensation reaction to couple L -serine with palmitoyl-CoA to generate a long-chain base product, 3-ketodihydrosphingosine. SLs are produced by mammals, plants, yeast, and some bacteria, and we have exploited the complete genome sequence of Sphingomonas wittichii to begin a complete analysis of bacterial sphingolipid biosynthesis. Here, we describe the enzymatic characterization of the SPT from this organism and present its high-resolution x-ray structure. Moreover, we identified an open reading frame with high sequence homology to acyl carrier proteins (ACPs) that are common to fatty acid biosynthetic pathways. This small protein was co-expressed with the SPT and we isolated and characterised the apo- and holo-forms of the ACP. Our studies suggest a link between fatty acid and sphingolipid metabolism. © 2010 Wiley Periodicals, Inc. Biopolymers 93: 811,822, 2010. [source] |