Spherical Silica Particles (spherical + silica_particle)

Distribution by Scientific Domains


Selected Abstracts


New Process for the Preparation of Monodispersed, Spherical Silica Particles

JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 5 2002
Ki Do Kim
A new method is presented for preparing highly monodispersed silica particles using a two-stage semibatch/batch hydrolysis reaction of Si(OC2H5)4. The slower rate of hydrolysis of the tetraethylorthosilicate (TEOS) that occurred during the semibatch process resulted in larger silica particles with a higher yield and narrower size distribution. This was in direct contrast to the batch process. In addition, the ability of four different mixed processes to produce silica particles with good packing density, narrower particle-size distribution, and higher yield were evaluated. These were batch/batch (B-B), batch/semibatch (B-S), semibatch/batch (S-B), and semibatch/semibatch (S-S) processes. The S-S system produced the largest particles with the highest yields. The size of the silica particles obtained by the S-B method decreased with increasing reaction time, while the particles obtained by the B-S process had the best particle-size distribution and packing density. In conclusion, a mixed batch/semibatch system was the best way to produce an extremely narrow particle-size distribution and a good packing density. [source]


A Facile Synthesis and Characterization of Monodisperse Spherical Pigment Particles with a Core/Shell Structure,

ADVANCED FUNCTIONAL MATERIALS, Issue 9 2007
C. Lin
Abstract In this paper, a facile sol,gel process for producing monodisperse, spherical, and nonaggregated pigment particles with a core/shell structure is reported. Spherical silica particles (245 and 385,nm in diameter) and Cr2O3, ,-Fe2O3, ZnCo2O4, CuFeCrO4, MgFe2O4, and CoAl2O4 pigments are selected as cores and shells, respectively. The obtained core/shell-structured pigment samples, denoted as SiO2@Cr2O3 (green), SiO2@,-Fe2O3 (red), SiO2@MgFe2O4 (brown), SiO2@ZnCo2O4 (dark green), SiO2@CoAl2O4 (blue), and SiO2@CuFeCrO4 (black), are well characterized by using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and UV-vis diffuse reflection, as well as by investigating the magnetic properties. The results of XRD and high-resolution TEM (HRTEM) demonstrate that the pigment shells crystallize well on the surface of SiO2 particles. The thickness of the pigment shell can be tuned by the number of coatings, to some extent. These pigment particles can be well dispersed in some solvents (such as glycol) to form relatively more stable suspensions than the commercial products. Apart from the color characteristics, some of pigments like SiO2@Cr2O3, SiO2@MgFe2O4, and SiO2@CuFeCrO4 also show magnetic properties with coercivities of 1098,Oe (5,K), 648,Oe (5,K), and 91,Oe (298,K), respectively. [source]


Methodology Optimization for Quantification of Total Phenolics and Individual Phenolic Acids in Sweetpotato (Ipomoea batatas L.) Roots

JOURNAL OF FOOD SCIENCE, Issue 7 2007
M.S. Padda
ABSTRACT:, Phenolic acids are one of the several classes of naturally occurring antioxidant compounds found in sweetpotatoes. Simplified, robust, and rapid methodologies were optimized to quantify total and individual phenolic acids in sweetpotato roots. Total phenolic acid content was quantified spectrophotometrically using both Folin,Denis and Folin,Ciocalteu reagents. The Folin,Ciocalteu reagent gave an overestimation of total phenolic acids due to the absorbance of interfering compounds (that is, reducing sugars and ascorbic acid). Individual phenolic acids were quantified by high-performance liquid chromatography (HPLC) using the latest in column technology. Four reversed-phase C18 analytical columns with different properties (dimensions, particle size, particle shape, pore size, and carbon load) were compared. Three different mobile phases using isocratic conditions were also evaluated. A column (4.6 × 150 mm) packed with 5-,m spherical silica particles of pore size 110 Å combined with 14% carbon load provided the best and fast separation of individual phenolic acids (that is, chlorogenic acid, caffeic acid, and 3 isomers of dicaffeoylquinic acid) with a total analysis time of less than 7 min. Among the 3 mobile phases tested, a mobile phase consisting of 1% (v/v) formic acid aqueous solution: acetonitrile: 2-propanol, pH 2.5 (70:22:8, v/v/v) gave adequate separation. Among the solvents tested, aqueous mixtures (80:20, solvent:water) of methanol and ethanol provided higher phenolic acid extraction efficiency than the aqueous mixture of acetone. [source]


Spherical ordered mesoporous silicas and silica monoliths as stationary phases for liquid chromatography

JOURNAL OF SEPARATION SCIENCE, JSS, Issue 6 2006
Anne Galarneau
Abstract Ordered mesoporous silicas such as micelle-templated silicas (MTS) feature unique textural properties in addition to their high surface area (,1000 m2/g): narrow mesopore size distributions and controlled pore connectivity. These characteristics are highly relevant to chromatographic applications for resistance to mass transfer, which has never been studied in chromatography because of the absence of model materials such as MTS. Their synthesis is based on unique self-assembly processes between surfactants and silica. In order to take advantage of the perfectly adjustable texture of MTS in chromatographic applications, their particle morphology has to be tailored at the micrometer scale. We developed a synthesis strategy to control the particle morphology of MTS using the concept of pseudomorphic transformation. Pseudomorphism was recognized in the mineral world to gain a mineral that presents a morphology not related to its crystallographic symmetry group. Pseudomorphic transformations have been applied to amorphous spherical silica particles usually used in chromatography as stationary phases to produce MTS with the same morphology, using alkaline solution to dissolve progressively and locally silica and reprecipitate it around surfactant micelles into ordered MTS structures. Spherical beads of MTS with hexagonal and cubic symmetries have been synthesized and successfully used in HPLC in fast separation processes. MTS with a highly connected structure (cubic symmetry), uniform pores with a diameter larger than 6 nm in the form of particles of 5 ,m could compete with monolithic silica columns. Monolithic columns are receiving strong interest and represent a milestone in the area of fast separation. Their synthesis is a sol-gel process based on phase separation between silica and water, which is assisted by the presence of polymers. The control of the synthesis of monolithic silica has been systematically explored. Because of unresolved yet cladding problems to evaluate the resulting macromonoliths in HPLC, micromonoliths were synthesized into fused-silica capillaries and evaluated by nano-LC and CEC. Only CEC allows to gain high column efficiencies in fast separation processes. Capillary silica monolithic columns represent attractive alternatives for miniaturization processes (lab-on-a chip) using CEC. [source]


A validated enantiospecific method for determination and purity assay of clopridogrel

CHIRALITY, Issue 10 2009
Katarina Nikolic
Abstract A new and accurate HPLC method using ,-cyclodextrin chemically bonded to spherical silica particles as chiral stationary phase (CSP) was developed and validated for determination of S -clopidogrel and its impurities R -enantiomer and S -acid as a hydrolytic product. The effects of acetonitrile and methanol content in the mobile phase and temperature on the resolution and retention of enantiomers were investigated. A satisfactory resolution of S -clopidogrel active form and its impurities was achieved on ChiraDex® column (5 ,m, 4 × 250 mm) at a flow rate of 1.0 ml/min and 17°C using acetonitrile, methanol and 0.01 M potassium dihydrogen phosphate solution (15:5:80 v/v/v) as mobile phase. The detection wavelength was set at 220 nm. The method was validated in terms of accuracy, precision, linearity, and robustness. The limit of detection for R- enantiomer and S -acid were 0.75 and 0.09 ,g/ml, respectively, injection volume being 20 ,l. Finally, the molecular modeling of the inclusion complexes between the analytes and ,-cyclodextrin was performed to investigate the mechanism of the enantiorecognition and to study the quantitative structure,retention relationships. Chirality, 2009. © 2008 Wiley-Liss, Inc. [source]