Home About us Contact | |||
Southern Flank (southern + flank)
Selected AbstractsSpatial distribution and overlap between ichthyoplankton and pelagic fish and squids on the southern flank of Georges BankFISHERIES OCEANOGRAPHY, Issue 5 2002Lance P. Garrison Abstract We conducted larval and adult fish surveys on the southern flank of Georges Bank during the spring of two years (1990 and 1995) with contrasting physical conditions. We employed canonical correspondence analysis (CCA) to examine the relationships between physical variables and the spatial distribution of pelagic fish and ichthyoplankton. Surface temperature bottom temperature, and vertical stratification were significant factors affecting larval fish distributions, and there were groups of species with similar responses to these variables. There were also consistent relationships between physical variables and pelagic fish and squid abundances and spatial distributions. Pelagic fish and ichthyoplankton with similar responses to hydrographic variables had high spatial overlap, and variation in hydrographic regimes modulated the strength of this interaction. Pelagic fish and squids are potentially important predators of both larval and juvenile fish on Georges Bank. Hydrographic structure modulates the degree of spatial overlap and therefore likely influences the strength of predator,prey interactions. [source] Tyatya Volcano, southwestern Kuril arc: Recent eruptive activity inferred from widespread tephraISLAND ARC, Issue 4 2002MITSUHIRO NAKAGAWA Abstract Tyatya Volcano, situated in Kunashir Island at the southwestern end of Kuril Islands, is a large composite stratovolcano and one of the most active volcanoes in the Kuril arc. The volcanic edifice can be divided into the old and the young ones, which are composed of rocks of distinct magma types, low- and medium-K series, respectively. The young volcano has a summit caldera with a central cone. Recent eruptions have occurred at the central cone and at the flank vents of the young volcano. We found several distal ash layers at the volcano and identified their ages and sources, that is, tephras of ad 1856, ad 1739, ad 1694 and ca 1 Ka derived from three volcanoes of Hokkaido, Japan, and caad 969 from Baitoushan Volcano of China/North Korea. These could provide good time markers to reveal the eruptive history of the central cone, which had continued intermittently with Strombolian eruptions and lava flow effusions since before 1 Ka. Relatively explosive eruptions have occurred three times at the cone during the past 1000 years. We revealed that, topographically, the youngest lava flows from the cone are covered not by the tephra of ad 1739 but by that of ad 1856. This evidence, together with a report of dense smoke rising from the summit in ad 1812, suggests that the latest major eruption with lava effusion from the central cone occurred in this year. In 1973, after a long period of dormancy, short-lived phreatomagmatic eruptions began to occur from fissure vents at the northern flank of the young volcano. This was followed by large eruptions of Strombolian to sub-Plinian types occurring from several craters at the southern flank. The 1973 activity is evaluated as Volcanic Explosivity Index = 4 (approximately 0.2 km3), the largest eruption during the 20th century in the southwestern Kuril arc. The rocks of the central cone are strongly porphyritic basalt and basaltic andesite, whereas the 1973 scoria is aphyric basalt, suggesting that magma feeding systems are definitely different between the summit and flank eruptions. [source] Tectonic vs. climate forcing in the Cenozoic sedimentary evolution of a foreland basin (Eastern Southalpine system, Italy)BASIN RESEARCH, Issue 6 2009N. Mancin ABSTRACT This paper discusses the Cenozoic interaction of regional tectonics and climate changes. These processes were responsible for mass flux from mountain belts to depositional basins in the eastern Alpine retro-foreland basin (Venetian,Friulian Basin). Our discussion is based on the depositional architecture and basin-scale depositional rate curves obtained from the decompacted thicknesses of stratigraphic units. We compare these data with the timing of tectonic deformation in the surrounding mountain ranges and the chronology of both long-term trends and short-term high-magnitude (,aberrant') episodes of climate change. Our results confirm that climate forcing (and especially aberrant episodes) impacted the depositional evolution of the basin, but that tectonics was the main factor driving sediment flux in the basin up to the Late Miocene. The depositional rate remained below 0.1 mm year,1 on average from the Eocene to the Miocene, peaking at around 0.36 mm year,1, during periods of maximum tectonic activity in the eastern Southern Alps. This dynamic strongly changed during the Pliocene,Pleistocene, when the basin-scale depositional rate increased to an average of 0.26 mm year,1 (Pliocene) and 0.73 mm year,1 (Pleistocene). This result fits nicely with the long-term global cooling trend recorded during this time interval. Nevertheless, we note that the timing of the observed increase may be connected with the presumed onset of major glaciations in the southern flank of the Alps (0.7,0.9 Ma), the acceleration of the global cooling trend (since 3,4 Ma) and climate variability (in terms of magnitude and frequency). All these factors suggest that combined high-frequency and high-magnitude cooling,warming cycles are particularly powerful in promoting erosion in mid-latitude mountain belts and therefore in increasing the sediment flux in foreland basins. [source] Universality and variability in basin outlet spacing: implications for the two-dimensional form of drainage basinsBASIN RESEARCH, Issue 2 2009Rachel C. Walcott ABSTRACT It has been observed that the distance between the outlets of transverse basins in orogens is typically half of the distance between the main divide and the range front irrespective of mountain range size or erosional controls. Although it has been suggested that this relationship is the inherent expression of Hack's law, and/or possibly a function of range widening, there are cases of notable deviations from the typical half-width average spacing. Moreover, it has not been demonstrated that this general relationship is also true for basins in morphologically similar nonorogenic settings, or for those that do not extend to the main drainage divide. These issues are explored by investigating the relationship between basin outlet spacing and the 2-dimensional geometric properties of drainage basins (basin length, main valley length and basin area) in order to assess whether the basin outlet spacing-range width ratio is a universal characteristic of fluvial systems. We examined basins spanning two orders of magnitude in area along the southern flank of the Himalayas and the coastal zone of southeast Africa. We found that the spacing between basin outlets (Los) for major transverse basins that drain the main divide (range-scale basins) is approximately half of the basin length (Lb) for all basins, irrespective of size, in southeast Africa. In the Himalayas, while this ratio was observed for eastern Himalayan basins (a region where the maximum elevations coincided with the main drainage divide), it was only observed in basins shorter than ,30 km in the western and central Himalayas. Our analysis indicates that basin outlet spacing is consistent with Hack's law, apparently because the increase in basin width (represented by outlet spacing) with basin area occurs at a rate similar to the increase in main stream length (Lv) with basin area. It is suggested that most river systems tend towards an approximately diamond-shaped packing arrangement, and this applies both to the nonorogenic setting of southeast Africa as well as most orogenic settings. However, in the western Himalayas shortening associated with localised rock uplift appears to have occurred at length scales smaller than most the basins examined. As a result rivers in basins longer than ,30 km have been unable to erode in a direction normal to the range front at a sufficiently high rate to sustain this form and have been forced into an alternative, and possibly unstable, packing arrangement. [source] Mass balance of a slope glacier on Kilimanjaro and its sensitivity to climateINTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 7 2008Thomas Mölg Abstract Meteorological and glaciological measurements obtained at 5873 m a.s.l. on Kersten Glacier, a slope glacier on the southern flanks of Kilimanjaro, are used to run a physically-based mass balance model for the period February 2005 to January 2006. This shows that net shortwave radiation is the most variable energy flux at the glacier-atmosphere interface, governed by surface albedo. The majority of the mass loss (,65%) is due to sublimation (direct conversion of snow/ice to water vapour), with melting of secondary importance. Sensitivity experiments reveal that glacier mass balance is 2,4 times more sensitive to a 20% precipitation change than to a 1 °C air temperature change. These figures also hold when the model is run with input data representative of a longer term (1979,2004) mean period. Results suggest that a regional-scale moisture projection for the 21st century is crucial to a physically-based prediction of glacier retention on Africa's highest mountain. Copyright © 2007 Royal Meteorological Society [source] Isozyme variation and recent biogeographical history of the long-lived conifer Fitzroya cupressoidesJOURNAL OF BIOGEOGRAPHY, Issue 2 2000A. C. Premoli Abstract Aim Palaeoenvironmental records of Pleistocene glaciation and associated vegetation changes in Patagonia have led to the hypothesis that during the last glacial maximum (LGM) tree species survived locally in favourable habitats. If present populations originated from spread from only one refugium, such as an ice-free area of coastal Chile (Single Refugium hypothesis), we would expect that eastern populations would be genetically depauperate and highly similar to western populations. In contrast, if the ice cap was not complete and tree species persisted in forest patches on both slopes of the Andes (Multiple Refugia hypothesis), we would expect a greater degree of genetic divergence between populations either on opposite sides of the Cordillera (Cordillera Effect scenario) or towards its present-day southern distributional limit where the ice sheet reached its maximum coverage (Extent-of-the-Ice scenario). Location We tested this refugia hypothesis using patterns of isozyme variation in populations sampled over the entire modern range of the endemic conifer Fitzroya cupressoides (Mol.) Johnst. (Cupressaceae) in temperate South America. Methods Fresh foliage was collected from twenty-four populations and analysed by horizontal electrophoresis on starch gels. Results Twenty-one putative loci were reliably scored and 52% were polymorphic in at least one population. Populations from the eastern slope of the Andes were genetically more variable than those from the western slope; the former had a greater mean number of alleles per locus, a larger total number of alleles and rare alleles, and higher polymorphism. Genetic identities within western populations were greater than within eastern populations. Discriminant analyses using allelic frequencies of different grouping schedules of populations were non significant when testing for the Single Refugium hypothesis whereas significant results were obtained for the Multiple Refugia hypothesis. Main conclusions Our results indicate that present Fitzroya populations are the result of spreading from at least two, but possibly more, glacial refugia located in Coastal Chile and on the southern flanks of the Andes in Argentina. [source] THE VENEZUELAN HYDROCARBON HABITAT, PART 2: HYDROCARBON OCCURRENCES AND GENERATED-ACCUMULATED VOLUMESJOURNAL OF PETROLEUM GEOLOGY, Issue 2 2000K. H. James Venezuela's most important hydrocarbon reserves occur in the intermontane Maracaibo Basin and in the Eastern Venezuela foreland basin. Seeps are abundant in these areas. Lesser volumes occur in the Barinas-Apure foreland basin. Most of the oil in these basins was derived from the Upper Cretaceous La Luna Formation in the west and its equivalent, the Querecual Formation, in the east. Minor volumes of oil derived from Tertiary source rocks occur in the Maracaibo and Eastern Venezuela Basins and in the Falcdn area. Offshore, several TCF of methane with some associated condensate are present in the Cadpano Basin, and gas is also present in the Columbus Basin. Oil reserves are present in La Vela Bay and in the Gulf of Paria, and oil has been encountered in the Cariaco Basin. The Gulf of Venezuela remains undrilled. The basins between the Netherlands and Venezuelan Antillian Islands seem to lack reservoirs. Tertiary sandstones provide the most important reservoirs, but production comes also from fractured basement (igneous and metamorphic rocks), from basal Cretaceous sandstones and from fractured Cretaceous limestones. Seals are provided by encasing shales, unconformities, faults and tar plugs. There is a wide variety of structural and stratigraphic traps. The Orinoco Heavy Oil Belt of the Eastern Venezuela Basin, one of the world's largest accumulations (1.2 times 1012 brl) involves stratigraphic trapping provided by onlap and by tar plugging. Stratigraphic trapping involving unconformities and tar plugging also plays a major role also in the Bolivar Coastal complex of fields along the NE margin of Lake Maracaibo. Many of the traps elsewhere in the Maracaibo Basin were influenced by faulting. The faults played an extensional role during Jurassic rifting and subsequently suffered inversion and strike-slip reactivation. This created anticlines as well as fracture porosity and permeability, and influenced the distribution of sandstone reservoirs, unconformities and related truncation traps. The faults probably also provided migration paths as well as lateral seals. This is very likely the case also in the large, thrust-related traps of the Furrial Trend in Eastern Venezuela. Normal faults, many antithetic to basement dip, provide important traps in the Las Mercedes, Oficina and Emblador complexes on the southern flanks of the Eastern Venezuela Basin. Similar faults seem to control the Sinco-Silvestre complex of the Barinas-Apure Basin. Much of VenezuelaS crude (around 1.5 trillion brls original STOIIP) has been degraded and is heavy, Perhaps two to three trillion brls of precursor, lighter oil existed. While the known Upper Cretaceous La Luna and Querecual Formations are known to include prolific source rocks, a reasonable generation/accumulation efficiency of 10% implies volumes too large to have come from the reported kitchens. The country's vast reserves are perhaps better explained by recognizing that the present-day basins are remnants of much broader sedimentary areas. The source rocks originally had a much more regional distribution. They suffered widespread, earlier phases of generation that probably charged early-formed traps on a regional scale. These, together with more recent kitchens, provided oil to the present-day accumulations. This history involved long-distance migration and remigration. [source] |