Home About us Contact | |||
Southeast Alaska (southeast + alaska)
Selected AbstractsSpatial and temporal variability of the Aleutian climateFISHERIES OCEANOGRAPHY, Issue 2005SERGEI N. RODIONOV Abstract The objective of this paper is to highlight those characteristics of climate variability that may pertain to the climate hypothesis regarding the long-term population decline of Steller sea lions (Eumetopias jubatus). The seasonal changes in surface air temperature (SAT) across the Aleutian Islands are relatively uniform, from 5 to 10°C in summer to near freezing temperatures in winter. The interannual and interdecadal variations in SAT, however, are substantially different for the eastern and western Aleutians, with the transition found at about 170°W. The eastern Aleutians experienced a regime shift toward a warmer climate in 1977, simultaneously with the basin-wide shift in the Pacific Decadal Oscillation (PDO). In contrast, the western Aleutians show a steady decline in winter SATs that started in the 1950s. This cooling trend was accompanied by a trend toward more variable SAT, both on the inter- and intra-annual time scale. During 1986,2002, the variance of winter SATs more than doubled compared to 1965,1985. At the same time in Southeast Alaska, the SAT variance diminished by half. Much of the increase in the intra-seasonal variability for the western Aleutians is associated with a warming trend in November and a cooling trend in January. As a result, the rate of seasonal cooling from November to January has doubled since the late 1950s. We hypothesize that this trend in SAT variability may have increased the environmental stress on the western stock of Steller sea lions and hence contributed to its decline. [source] Are Alaskan trees found in locally more favourable sites in marginal areas?GLOBAL ECOLOGY, Issue 2 2002Jack J. Lennon Abstract Aim Species generally become rarer and more patchily distributed as the margins of their ranges are approached. We predicted that in such marginal sites, tree species would tend to occur where some key environmental factors are at particularly favourable levels, compensating in part for the low overall suitability of marginal sites. Location The article considers the spatial distributions of trees in Southeast Alaska (the Alaskan ,panhandle'). Methods We quantified range marginality using spatial distributions of eight tree species across more than one thousand surveyed sites in Southeast Alaska. For each species we derived a site core/margin index using a three-dimensional trend surface generated from logistic regression on site coordinates. For each species, the relationships between the environmental factors slope, aspect and site marginality were then compared for occupied and unoccupied sets of sites. Results We found that site slope is important for more Alaskan tree species than aspect. Three out of eight had a significant core/margin by occupied/unoccupied interaction, tending to be present in significantly shallower-sloped (more favourable) sites in the marginal areas than the simple core/margin trend predicted. For site aspect, one species had a significant interaction, selecting potentially more favourable northerly aspects in marginal areas. A finer-scale analysis based on the same data came to the same overall conclusions. Conclusions There is evidence that several tree species in Alaska tend to occur in especially favourable sites in marginal areas. In these marginal areas, these species amplify habitat preferences shown in core areas. [source] Southeast Alaska: oceanographic habitats and linkagesJOURNAL OF BIOGEOGRAPHY, Issue 3 2009Thomas Weingartner Abstract We provide an overview of the physical oceanographic and geological processes that affect marine biological habitats and production in the marine waters throughout the archipelago and continental shelf of Southeast Alaska. Given the paucity of regional data, our overview summarizes work done in adjacent regions of the Gulf of Alaska shelf and basin, and draws on research carried out in similar settings elsewhere. The geological setting, which critically influences the regional meteorology and oceanography, includes a narrow continental shelf, deep channels that permeate the archipelago, fjords, glaciers and a rugged, mountainous coast. The large-scale meteorology is influenced primarily by seasonal variations in the intensity and position of the Aleutian Low. Winds, freshwater runoff, tides and cross-shelf exchange control the regional oceanography. The large-scale flow field advects mass, heat, salt, nutrients and planktonic organisms northward from British Columbia (and even further south) to the northern Gulf of Alaska along the slope, shelf, and within the channels of Southeast Alaska. The deep channels permeating the island archipelago and narrow continental shelf facilitate communication between basin and interior waters. Water properties and flow fields are subject to large annual variations in response to similarly large variations in winds and coastal freshwater discharge. The complex geological setting leads to large spatial heterogeneity in the physical processes controlling the local circulation fields and mixing, thereby creating numerous and diverse marine biological habitats. These various circulation and mixing processes modify substantially Southeast Alaska water masses and thus influence marine ecosystem processes downstream over the northern and western Gulf of Alaska shelf. [source] The biogeography of seaweeds in Southeast AlaskaJOURNAL OF BIOGEOGRAPHY, Issue 3 2009Sandra C. Lindstrom Abstract Aim, This article reviews the history of seaweed collections in Southeast Alaska from the early Russian explorers to contemporary efforts. It summarizes other studies of Southeast Alaskan seaweeds from a biogeographical perspective, and compares the known seaweed flora near three population centres (Ketchikan, Sitka and Juneau) with those of other regions within Alaska, and with nearby regions. Location, For this article, Southeast Alaska includes all inside and outside waters of the Alexander Archipelago from Dixon Entrance (54°40, N, 133°00, W) to Icy Point (58°23,10, N, 137°04,20, W). Methods, The literature on seaweeds occurring in Southeast Alaska is reviewed from a biogeographical perspective, and herbarium records for Southeast Alaska from the Alaska Seaweed Database project are used to provide an overview of the biogeography of the area. Records for the population centres of Ketchikan, Sitka and Juneau are compared with records from other areas within Alaska and with nearby regions to determine floristic similarities. Results, Southeast Alaska has the most diverse seaweed flora of any region of Alaska. A list of species known to occur in Southeast Alaska is appended (in Supplementary Material) and includes their reported occurrences in three population centres (Juneau, Ketchikan and Sitka). Recognition of at least three distinct biogeographical areas associated with these three centres is supported by a comparison of their floras with those of other regions in the North Pacific. A close relationship of some species with conspecifics in the north-west Atlantic is also noted. In contrast, ecological, physiological and genetic differentiation of Southeast Alaskan seaweeds from conspecifics in Washington State or even from different areas of Southeast Alaska are documented. A ShoreZone coastal habitat system, which is being implemented to inventory and map the entire shoreline of Southeast Alaska, is defining new biogeographical units called ,bioareas' on the basis of the distribution of canopy kelps and lower intertidal algal assemblages. Main conclusions, Southeast Alaska has the most diverse seaweed flora of any region of Alaska. This is a reflection of its extensive coastline, with varied past and present environmental conditions. Different parts of Southeast Alaska show similarities to different areas outside Southeast Alaska. Despite this, much remains to be learned about the biogeography of seaweeds in Southeast Alaska, and many questions remain to be answered. [source] The Praxis of Indigenism and Alaska Native Timber PoliticsAMERICAN ANTHROPOLOGIST, Issue 4 2002Kirk Dombrowski This article addresses the most recent discourse on indigenism in Southeast Alaska that has emerged around the Alaska Native Claims Settlement Act of 1971 and its subsequent revisions. It argues that one must consider the "politics of recognition" in Southeast Alaska in terms of the larger political dynamics that shape state and industry access to resources, especially commercially valuable stands of timber. In Southeast Alaska, recognition of Native claims has allowed industrial timber and pulp producers to, in effect, circumvent environmental laws aimed at curbing production, thus allowing them to continue devastating the living conditions of many Natives. Among the local responses to the manipulation of Native claims and identity, the all,Native, radical Christian churches that have taken a strong stance against the recent, corporate,sponsored, cultural revitalization are unique in their resistance to indigenist politics. [Keywords: indigenism, Alaska Natives, development, Pentecostalism] [source] Evaluation of soil saturation, soil chemistry, and early spring soil and air temperatures as risk factors in yellow-cedar declineGLOBAL CHANGE BIOLOGY, Issue 3 2006D. V. D'AMORE Abstract Yellow-cedar (Callitropsis nootkatensis (D. Don) Oerst.) is a valuable tree species that is experiencing a widespread decline and mortality in southeast Alaska. This study evaluated the relative importance of several potential risk factors associated with yellow-cedar decline: soil saturation, soil aluminum (Al) toxicity or calcium (Ca) deficiency, and air and soil temperature. Data were collected from permanent vegetation plots established in two low-elevation coastal forests exhibiting broad ranges of cedar mortality. Measurements of each risk factor were contrasted among classified forest zones to indicate if there were strong links with decline. Hydrology alone is weakly associated with yellow-cedar decline, but could have a predisposing role in the decline by creating exposed conditions because of reduced forest productivity. Yellow-cedar decline is not strongly associated with soil pH and extractable Al and Ca, but there appears to be Ca enrichment of surface soils by feedback from dead yellow-cedar foliage. Air and soil temperature factors are strongly associated with decline. Based on these results, an hypothesis is presented to explain the mechanism of tree injury where exposure-driven tree mortality is initiated in gaps created by soil saturation and then expands in gaps created by the tree-mortality itself. The exposure allows soils to warm in early spring causing premature dehardening in yellow-cedar trees and subsequent freezing injury during cold events. Yellow-cedars growing in the protection of shade or snow are not preconditioned by this warming, and thus not as susceptible to cold injury. Yellow-cedar decline appears to be associated with regional climate changes, but whether the cause of these changes is related to natural or human-induced climate shifts remains uncertain. Management implications, the possible role of climate, and recommended research are discussed. [source] LANDSLIDE INITIATION, RUNOUT, AND DEPOSITION WITHIN CLEARCUTS AND OLD-GROWTH FORESTS OF ALASKA,JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 1 2000A. C. Johnson ABSTRACT: More than 300 landslides and debris flows were triggered by an October 1993 storm on Prince of Wales Island, southeast Alaska. Initiation, runout, and deposition patterns of landslides that occurred within clearcuts, second-growth, and old-growth forests were examined. Blowdown and snags, associated with cedar decline and "normal" rates of mortality, were found adjacent to at least 75 percent of all failures regardless of land use. Nearly 50 percent of the landslides within clearcuts occurred within one year following timber harvest; more than 70 percent of these sites had hydrophytic vegetation directly above failures. In following the runout paths of failures, significantly more erosion per unit area occurred within clearcuts than in old-growth forests on slopes with gradients from 9 to 28* (16 to 54 percent). Runout length, controlled by hillslope position within deglaciated valleys, was typically longer in old-growth forests than in second growth and clearcuts (median values were 334, 201, and 153 m, respectively). Most landslides and debris flows deposited in first-and second-order channels before reaching the main stem channels used by anadromous fish. Slide deposits in old-growth forests were composed of a higher proportion of woody debris than deposits derived from slides in second growth or clearcuts. [source] Impact of changing diet regimes on Steller sea lion body conditionMARINE MAMMAL SCIENCE, Issue 2 2008Shannon Atkinson Abstract A leading theory for the cause of the decline of Steller sea lions is nutritional stress, which led to chronic high juvenile mortality and possibly episodic adult mortality. Nutritional stress may have resulted from either poor quality or low abundance of prey. The objective of this study was to determine whether we could predict shifts in body condition (i.e., body mass or body fat content) over different seasons associated with a change in diet (i.e., toward lower quality prey). Captive Steller sea lions (n= 3) were fed three different diet regimes, where Diet 1 approximated the diet in the Kodiak area in the 1970s prior to the documented decline in that area, Diet 2 approximated the species composition in the Kodiak area after the decline had begun, and Diet 3 approximated the diet in southeast Alaska where the Steller sea lion population has been increasing for over 25 yr. All the animals used in this study were still growing and gained mass regardless of diet. Body fat (%) varied between 13% and 28%, but was not consistently high or low for any diet regime or season. Mean intake (in kg) of Diet 2 was significantly greater for all sea lions during all seasons. All animals did, however, tend to gain less body mass on Diets 2 and 3, as well as during the breeding and postbreeding seasons. They also tended to gain more mass during the winter and on Diet 1, though these differences were not statistically significant. Thus, changing seasonal physiology of Steller sea lions appears to have more impact on body condition than quality of prey, provided sufficient quantity of prey is available. Steller sea lions are opportunistic predators and are evidently able to thrive on a variety of prey. Our results indicate that Steller sea lions are capable of compensating for prey of low quality. [source] A Signal for Independent Coastal and Continental histories among North American wolvesMOLECULAR ECOLOGY, Issue 4 2005BYRON V. WECKWORTH Abstract Relatively little genetic variation has been uncovered in surveys across North American wolf populations. Pacific Northwest coastal wolves, in particular, have never been analysed. With an emphasis on coastal Alaska wolf populations, variation at 11 microsatellite loci was assessed. Coastal wolf populations were distinctive from continental wolves and high levels of diversity were found within this isolated and relatively small geographical region. Significant genetic structure within southeast Alaska relative to other populations in the Pacific Northwest, and lack of significant correlation between genetic and geographical distances suggest that differentiation of southeast Alaska wolves may be caused by barriers to gene flow, rather than isolation by distance. Morphological research also suggests that coastal wolves differ from continental populations. A series of studies of other mammals in the region also has uncovered distinctive evolutionary histories and high levels of endemism along the Pacific coast. Divergence of these coastal wolves is consistent with the unique phylogeographical history of the biota of this region and re-emphasizes the need for continued exploration of this biota to lay a framework for thoughtful management of southeast Alaska. [source] A General Framework for the Analysis of Animal Resource Selection from Telemetry DataBIOMETRICS, Issue 3 2008Devin S. Johnson Summary We propose a general framework for the analysis of animal telemetry data through the use of weighted distributions. It is shown that several interpretations of resource selection functions arise when constructed from the ratio of a use and availability distribution. Through the proposed general framework, several popular resource selection models are shown to be special cases of the general model by making assumptions about animal movement and behavior. The weighted distribution framework is shown to be easily extended to readily account for telemetry data that are highly autocorrelated; as is typical with use of new technology such as global positioning systems animal relocations. An analysis of simulated data using several models constructed within the proposed framework is also presented to illustrate the possible gains from the flexible modeling framework. The proposed model is applied to a brown bear data set from southeast Alaska. [source] |