Bayesian Clustering (bayesian + clustering)

Distribution by Scientific Domains

Terms modified by Bayesian Clustering

  • bayesian clustering analysis

  • Selected Abstracts


    MULTILOCUS ANALYSES OF ADMIXTURE AND INTROGRESSION AMONG HYBRIDIZING HELICONIUS BUTTERFLIES

    EVOLUTION, Issue 6 2006
    Marcus R. Kronforst
    Abstract Introgressive hybridization is an important evolutionary process and new analytical methods provide substantial power to detect and quantify it. In this study we use variation in the frequency of 657 AFLP fragments and DNA sequence variation from 15 genes to measure the extent of admixture and the direction of interspecific gene flow among three Heliconius butterfly species that diverged recently as a result of natural selection for Müllerian mimicry, and which continue to hybridize. Bayesian clustering based on AFLP genotypes correctly delineated the three species and identified four H. cydno, three H. pachinus, and three H. melpomene individuals that were of mixed ancestry. Gene genealogies revealed substantial shared DNA sequence variation among all three species and coalescent simulations based on the Isolation with Migration (IM) model pointed to interspecific gene flow as its cause. The IM simulations further indicated that interspecific gene flow was significantly asymmetrical, with greater gene flow from H. pachinus into H. cydno (2Nm 5 4.326) than the reverse (2Nm 5 0.502), and unidirectional gene flow from H. cydno and H. pachinus into H. melpomene (2Nm 5 0.294 and 0.252, respectively). These asymmetries are in the directions expected based on the genetics of wing patterning and the probability that hybrids of various phenotypes will survive and reproduce in different mimetic environments. This empirical demonstration of extensive interspecific gene flow is in contrast to a previous study which found little evidence of gene flow between another pair of hybridizing Heliconius species, H. himera and H. erato, and it highlights the critical role of natural selection in maintaining species diversity. Furthermore, these results lend support to the hypotheses that phenotypic diversification in the genus Heliconius has been fueled by introgressive hybridization and that reinforcement has driven the evolution of assortative mate preferences. [source]


    Contrasting patterns of nuclear microsatellite genetic structure of Fraxinus mandshurica var. japonica between northern and southern populations in Japan

    JOURNAL OF BIOGEOGRAPHY, Issue 6 2010
    Li-Jiang Hu
    Abstract Aim, The aim of this study is to detect extant patterns of population genetic structure of Fraxinus mandshurica var. japonica in Japan, and to provide insights into the post-glacial history of this species during the Holocene. Location, Hokkaido and Honshu islands, Japan (including the Oshima and Shimokita peninsulas). Methods, We examined nine polymorphic nuclear microsatellite loci to assess genetic variation within and among 15 populations across almost the entire range of the species in Japan. Extant patterns of geographical structure were analysed using Bayesian clustering, Monmonier's algorithm, analysis of molecular variance, Mantel tests and principal coordinates analysis. Recent bottlenecks within populations and regional genetic variation were also assessed. Results, Northern populations (Hokkaido Island and the Shimokita Peninsula) formed a single homogeneous deme, maintaining the highest level of allelic diversity on the Oshima Peninsula. By contrast, southern populations (Honshu Island) demonstrated strong substructure on both coasts. Specifically, populations on the Pacific side of Honshu exhibited significant bottlenecks and erosion of allelic diversity but preserved distinct subclusters diverging from widespread subclusters on the Japan Sea side of this island. Main conclusions, Genetic evidence and life history traits suggest that F. mandshurica occupied cryptic northern refugia on the Oshima Peninsula during the Last Glacial Maximum, which is reflected in the species' extant northern distribution. Strong geographical structure in southern populations, in agreement with fossil pollen records, suggests geographical isolation by mountain ranges running north,south along Honshu. Given that this tree species is cold-adapted and found in riparian habitats, populations on the Pacific side of Honshu probably contracted into higher-elevation swamps during warm post-glacial periods, leading to a reduction of effective population sizes and rare allelic richness. [source]


    Contrasting phylogeographies inferred for the two alpine sister species Cardamine resedifolia and C. alpina (Brassicaceae)

    JOURNAL OF BIOGEOGRAPHY, Issue 1 2009
    Judita Lihová
    Abstract Aim, We use Cardamine alpina and C. resedifolia as models to address the detailed history of disjunctions in the European alpine system. These species grow on siliceous bedrock: C. alpina in the Alps and Pyrenees, and C. resedifolia in several mountain ranges from the Sierra Nevada to the Balkans. We explore differentiation among their disjunct populations as well as within the contiguous Alpine and Pyrenean ranges, and compare the phylogeographical histories of these diploid sister species. We also include samples of the closely related, arctic diploid C. bellidifolia in order to explore its origin and post-glacial establishment. Location, European alpine system, Norway and Iceland. Methods, We employed amplified fragment length polymorphisms (AFLPs). AFLP data were analysed using principal coordinates analysis, neighbour joining and Bayesian clustering, and measures of diversity and differentiation were computed. Results, For the snow-bed species C. alpina (27 populations, 203 plants) we resolved two strongly divergent lineages, corresponding to the Alps and the Pyrenees. Although multiple glacial refugia were invoked in the Pyrenees, we inferred only a single one in the Maritime Alps , from which rapid post-glacial colonization of the entire Alps occurred, accompanied by a strong founder effect. For C. resedifolia (33 populations, 247 plants), which has a broader ecological amplitude and a wider distribution, the genetic structuring was rather weak and did not correspond to the main geographical disjunctions. This species consists of two widespread and largely sympatric main genetic groups (one of them subdivided into four geographically more restricted groups), and frequent secondary contacts exist between them. Main conclusions, The conspicuously different histories of these two sister species are likely to be associated with their different ecologies. The more abundant habitats available for C. resedifolia may have increased the probability of its gradual migration during colder periods and also of successful establishment after long-distance dispersal, whereas C. alpina has been restricted by its dependence on snow-beds. Surprisingly, the arctic C. bellidifolia formed a very divergent lineage with little variation, contradicting a scenario of recent, post-glacial migration from the Alps or Pyrenees. [source]


    Bayesian clustering and product partition models

    JOURNAL OF THE ROYAL STATISTICAL SOCIETY: SERIES B (STATISTICAL METHODOLOGY), Issue 2 2003
    Fernando A. Quintana
    Summary. We present a decision theoretic formulation of product partition models (PPMs) that allows a formal treatment of different decision problems such as estimation or hypothesis testing and clustering methods simultaneously. A key observation in our construction is the fact that PPMs can be formulated in the context of model selection. The underlying partition structure in these models is closely related to that arising in connection with Dirichlet processes. This allows a straightforward adaptation of some computational strategies,originally devised for nonparametric Bayesian problems,to our framework. The resulting algorithms are more flexible than other competing alternatives that are used for problems involving PPMs. We propose an algorithm that yields Bayes estimates of the quantities of interest and the groups of experimental units. We explore the application of our methods to the detection of outliers in normal and Student t regression models, with clustering structure equivalent to that induced by a Dirichlet process prior. We also discuss the sensitivity of the results considering different prior distributions for the partitions. [source]


    Geographical variation of genetic and phenotypic traits in the Mexican sailfin mollies, Poecilia velifera and P. petenensis

    MOLECULAR ECOLOGY, Issue 9 2008
    S. J. HANKISON
    Abstract Comparing the patterns of population divergence using both neutral genetic and phenotypic traits provides an opportunity to examine the relative importance of evolutionary mechanisms in shaping population differences. We used microsatellite markers to examine population genetic structure in the Mexican sailfin mollies Poecilia velifera and P. petenensis. We compared patterns of genetic structure and divergence to that in two types of phenotypic traits: morphological characters and mating behaviours. Populations within each species were genetically distinct, and conformed to a model of isolation by distance, with populations within different geographical regions being more genetically similar to one another than were populations from different regions. Bayesian clustering and barrier analyses provided additional support for population separation, especially between geographical regions. In contrast, none of the phenotypic traits showed any type of geographical pattern, and population divergence in these traits was uncorrelated with that found in neutral markers. There was also a weaker pattern of regional differences among geographical regions compared to neutral genetic divergence. These results suggest that while divergence in neutral traits is likely a product of population history and genetic drift, phenotypic divergence is governed by different mechanisms, such as natural and sexual selection, and arises at spatial scales independent from those of neutral markers. [source]


    Detecting introgressive hybridization between free-ranging domestic dogs and wild wolves (Canis lupus) by admixture linkage disequilibrium analysis

    MOLECULAR ECOLOGY, Issue 10 2006
    A. VERARDI
    Abstract Occasional crossbreeding between free-ranging domestic dogs and wild wolves (Canis lupus) has been detected in some European countries by mitochondrial DNA sequencing and genotyping unlinked microsatellite loci. Maternal and unlinked genomic markers, however, might underestimate the extent of introgressive hybridization, and their impacts on the preservation of wild wolf gene pools. In this study, we genotyped 220 presumed Italian wolves, 85 dogs and 7 known hybrids at 16 microsatellites belonging to four different linkage groups (plus four unlinked microsatellites). Population clustering and individual assignments were performed using a Bayesian procedure implemented in structure 2.1, which models the gametic disequilibrium arising between linked loci during admixtures, aiming to trace hybridization events further back in time and infer the population of origin of chromosomal blocks. Results indicate that (i) linkage disequilibrium was higher in wolves than in dogs; (ii) 11 out of 220 wolves (5.0%) were likely admixed, a proportion that is significantly higher than one admixed genotype in 107 wolves found previously in a study using unlinked markers; (iii) posterior maximum-likelihood estimates of the recombination parameter r revealed that introgression in Italian wolves is not recent, but could have continued for the last 70 (± 20) generations, corresponding to approximately 140,210 years. Bayesian clustering showed that, despite some admixture, wolf and dog gene pools remain sharply distinct (the average proportions of membership to wolf and dog clusters were Qw = 0.95 and Qd = 0.98, respectively), suggesting that hybridization was not frequent, and that introgression in nature is counteracted by behavioural or selective constraints. [source]


    Chloroplast and microsatellite DNA diversities reveal the introduction history of Brazilian peppertree (Schinus terebinthifolius) in Florida

    MOLECULAR ECOLOGY, Issue 12 2005
    DEAN A. WILLIAMS
    Abstract Brazilian peppertree (Schinus terebinthifolius) is a woody perennial that has invaded much of Florida. This native of northeastern Argentina, Paraguay, and Brazil was brought as an ornamental to both the west and east coasts of Florida at the end of the 19th century. It was recorded as an invader of natural areas in the 1950s, and has since extended its range to cover over 280 000 ha. Our goals were to understand the history of this invasion, as one step toward understanding why this exotic was so successful, and ultimately to improve development of biological control agents. We sampled plants from the native and exotic ranges, particularly Florida, and genotyped these individuals at nuclear and chloroplast loci. Nuclear microsatellite and cpDNA loci reveal strong genetic population structure consistent with limited dispersal in the introduced and native ranges. Bayesian clustering of microsatellite data separates the east and west coast plants in Florida into distinct populations. The two chloroplast haplotypes found in Florida are also concordant with this separation: one predominates on the east coast, the other on the west coast. Analysis of samples collected in South America shows that haplotypes as distinct as the two in Florida are unlikely to have come from a single source population. We conclude that the genetic evidence supports two introductions of Brazilian peppertree into Florida and extensive hybridization between them. The west coast genotype likely came from coastal Brazil at about 27° south, whereas the east coast genotype probably originated from another, as yet unidentified site. As a result of hybridization, the Florida population does not exhibit low genetic variation compared to populations in the native range, possibly increasing its ability to adapt to novel environments. Hybridization also has important consequences for the selection of biocontrol agents since it will not be possible to identify closely co-adapted natural enemies in the native range, necessitating more extensive host testing. [source]


    Source population of dispersing rock-wallabies (Petrogale lateralis) idengified by assignment tests on multilocus genotypic data

    MOLECULAR ECOLOGY, Issue 12 2001
    M. D. B. Eldridge
    Abstract The ability to confidently idengify or exclude a population as the source of an individual has numerous powerful applications in molecular ecology. Several alternative assignment methods have recently been developed and are yet to be fully evaluated with empirical data. In this study we tested the efficacy of different assignment methods by using a translocated rock-wallaby (Petrogale lateralis) population, of known provenance. Specimens from the translocated population (n = 43), its known source population (n = 30) and four other nearby populations (n = 19,32) were genotyped for 11 polymorphic microsatellite loci. The results idengified Bayesian clustering, frequency and Bayesian methods as the most consistent and accurate, correctly assigning 93,100% of individuals up to a significance threshold of P = 0.01. Performance was variable among the distance-based methods, with the Cavalli-Sforza and Edwards chord distance performing best, whereas Goldstein et al.'s (,µ)2 consistently performed poorly. Using Bayesian clustering, frequency and Bayesian methods we then attempted to determine the source of rock-wallabies which have recently recolonized an outcrop (Gardners) 8 km from the nearest rock-wallaby population. Results indicate that the population at Gardners originated via a recent dispersal event from the eastern end of Mt. Caroline. This is only the second published record of dispersal by rock-wallabies between habitat patches and is the longest movement recorded to date. Molecular techniques and methods of analysis are now available to allow detailed studies of dispersal in rock-wallabies and should also be possible for many other taxa. [source]