Basal Forebrain Cholinergic Neurons (basal + forebrain_cholinergic_neuron)

Distribution by Scientific Domains


Selected Abstracts


Selective lesions of basal forebrain cholinergic neurons produce anterograde and retrograde deficits in a social transmission of food preference task in rats

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 6 2002
Anna Vale-Martínez
Abstract We examined the performance of Long-Evans rats with 192 IgG-saporin lesions of the medial septum/vertical limb of the diagonal band (MS/VDB) or nucleus basalis magnocellularis/substantia innominata (NBM/SI), which removed cholinergic projections mainly to hippocampus or neocortex, respectively. We studied the effects of these lesions on anterograde and retrograde memory for a natural form of hippocampal-dependent associative memory, the social transmission of food preference. In a study of anterograde memory, MS/VDB lesions did not affect the immediate, 24-h or 3-week retention of the task. In contrast, NBM/SI lesions severely impaired immediate and 24-h retention. In a study of retrograde memory in which rats acquired the food preference 5 days or 1 day before surgery and they were tested 10,11 days after surgery, MS/VDB-lesioned rats showed striking memory deficits for the preference acquired at a long delay (5 days) before surgery, although all lesioned rats exhibited poorer retention on both retest sessions than on their pretest performance. Subsequent testing of new anterograde learning in these rats revealed no disrupting effects of lesions on a standard two-choice test. When rats were administered a three-choice test, in which the target food was presented along with two more options, NBM/SI-lesioned rats were somewhat impaired on a 24-h retention test. These results provide evidence that NBM/SI and MS/VDB cholinergic neurons are differentially involved in a social memory task that uses olfactory cues, suggesting a role for these neurons in acquisition and consolidation/retrieval of nonspatial declarative memory. [source]


Choline acetyltransferase activity at different ages in brain of Ts65Dn mice, an animal model for Down's syndrome and related neurodegenerative diseases

JOURNAL OF NEUROCHEMISTRY, Issue 2 2006
Andrea Contestabile
Abstract Ts65Dn mice, trisomic for a portion of chromosome 16 segmentally homologous to human chromosome 21, are an animal model for Down's syndrome and related neurodegenerative diseases, such as dementia of the Alzheimer type. In these mice, cognitive deficits and alterations in number of basal forebrain cholinergic neurons have been described. We have measured in Ts65Dn mice the catalytic activity of the cholinergic marker, choline acetyltransferase (ChAT), as well as the activity of the acetylcholine-degrading enzyme acetylcholinesterase (AChE), in the hippocampus and in cortical targets of basal forebrain cholinergic neurons. In mice aged 10 months, ChAT activity was significantly higher in Ts65Dn mice, compared to 2N animals, in the hippocampus, olfactory bulb, olfactory cortex, pre-frontal cortex, but not in other neocortical regions. At 19 months of age, on the other hand, no differences in ChAT activity were found. Thus, alterations of ChAT activity in these forebrain areas seem to recapitulate those recently described in patients scored as cases of mild cognitive impairment or mild Alzheimer's disease. Other neurochemical markers putatively associated with the disease progression, such as those implicating astrocytic hyperactivity and overproduction of amyloid precursor protein family, were preferentially found altered in some brain regions at the oldest age examined (19 months). [source]


Selective vulnerability in Alzheimer's disease: Amyloid precursor protein and p75NTR interaction,

ANNALS OF NEUROLOGY, Issue 3 2009
Joanna Fombonne PhD
Objective Selective neuronal vulnerability in neurodegenerative diseases is poorly understood. In Alzheimer's disease, the basal forebrain cholinergic neurons are selectively vulnerable, putatively because of their expression of the cell death mediator p75NTR (the common neurotrophin receptor), and its interaction with proapoptotic ligands pro,nerve growth factor and amyloid-, peptide. However, the relation between amyloid precursor protein (APP) and p75NTR has not been described previously. Methods APP and p75NTR were assayed for interaction by coimmunoprecipitation in vitro and in vivo, yeast two-hybrid assay, bioluminescence resonance energy transfer, and confocal microscopy. Effects on APP processing and signaling were studied using immunoblotting, enzyme-linked immunosorbent assays, and luciferase reporter assays. Results The results of this study are as follows: (1) p75NTR and APP interact directly; (2) this interaction is modified by ligands nerve growth factor and ,-amyloid; (3) APP and p75NTR colocalization in vivo is modified in Alzheimer's model transgenic mice; (4) APP processing is altered by p75NTR, and to a lesser extent, p75NTR processing is altered by the presence of APP; (5) APP-dependent transcription mediated by Fe65 is blocked by p75NTR; and (6) coexpression of APP and p75NTR triggers cell death. Interpretation These results provide new insight into the emerging signaling network that mediates the Alzheimer's phenotype and into the mechanism of basal forebrain cholinergic neuronal selective vulnerability. In addition, the results argue that the interaction between APP and p75NTR may represent a therapeutic target in Alzheimer's disease. Ann Neurol 2009;65:294,303 [source]


Minocycline prevents cholinergic loss in a mouse model of Down's syndrome

ANNALS OF NEUROLOGY, Issue 5 2004
Christopher L. Hunter PhD
Individuals with Down's syndrome develop Alzheimer's-like pathologies comparatively early in life, including progressive degeneration of basal forebrain cholinergic neurons (BFCNs). Cholinergic hypofunction contributes to dementia-related cognitive decline and remains a target of therapeutic intervention for Alzheimer's disease. In light of this, partial trisomy 16 (Ts65Dn) mice have been developed to provide an animal model of Down's syndrome that exhibits progressive loss of BFCNs and cognitive ability. Another feature common to both Down's syndrome and Alzheimer's disease is neuroinflammation, which may exacerbate neurodegeneration, including cholinergic loss. Minocycline is a semisynthetic tetracycline with antiinflammatory properties that has demonstrated neuroprotective properties in certain disease models. Consistent with a role for inflammatory processes in BFCN degeneration, we have shown previously that minocycline protects BFCNs and improves memory in mice with acute, immunotoxic BFCN lesions. We now report that minocycline treatment inhibits microglial activation, prevents progressive BFCN decline, and markedly improves performance of Ts65Dn mice on a working and reference memory task. Minocycline is an established antiinflammatory and neuroprotective drug and may provide a novel approach to treat specific AD-like pathologies. Ann Neurol 2004 [source]