Home About us Contact | |||
Basal Clade (basal + clade)
Selected AbstractsTwo new species that are likely to represent the most basal clade of the genus Trichadenotecnum (Psocoptera: Psocidae)ENTOMOLOGICAL SCIENCE, Issue 4 2003Kazunori YOSHIZAWA Abstract Two new Trichadenotecnum species, T. corniculum and T. germinatum, were described from Japan. These species were considered to compose a monophyletic group newly defined here as the corniculum group. Judging from morphology of male terminalia, the corniculum group was considered to represent the basal most clade of the genus Trichadenotecnum. [source] The hyomandibulae of rhizodontids (Sarcopterygii, stem-tetrapoda)JOURNAL OF MORPHOLOGY, Issue 6 2008Martin D. Brazeau Abstract Despite its important role in the study of the evolution of tetrapods, the hyomandibular bone (the homologue of the stapes in crown-group tetrapods) is known for only a few of the fish-like members of the tetrapod stem-group. The best-known example, that of the tristichopterid Eusthenopteron, has been used as an exemplar of fish-like stem-tetrapod hyomandibula morphology, but in truth the conditions at the base of the tetrapod radiation remain obscure. We report, here, four hyomandibulae, from three separate localities, which are referable to the Rhizodontida, the most basal clade of stem-tetrapods. These specimens share a number of characteristics, and are appreciably different from the small number of hyomandibulae reported for other fish-like stem-tetrapods. While it is unclear if these characteristics represent synapomorphies or symplesiomorphies, they highlight the morphological diversity of hyomandibulae within the early evolution of the tetrapod total-group. Well-preserved muscle scarring on some of these hyomandibulae permit more robust inferences of hyoid arch musculature in stem-tetrapods. J. Morphol., 2008. © 2008 Wiley-Liss, Inc. [source] 15 Phylogeny of the chlorophyta: inferences from 18S and 26S rDNAJOURNAL OF PHYCOLOGY, Issue 2003M. A. Buchheim Recent studies of the Chlorophyceae using 18S and 26S rDNA data in meta-analysis have demonstrated the power of combining these two sets of rDNA data. Furthermore, the 26S rDNA data complement the more conserved 18S gene for many chlorophycean lineages. Consequently, this data approach was pursued in an expanded taxon-sampling scheme for the Chlorophyta, with special reference to the classes Chlorophyceae and Trebouxiophyceae. Results of these new phylogenetic analyses identify Microspora sp. (UTEX LB 472) and Radiofilum transversale (UTEX LB 1252) as sister taxa which, in turn, form a basal clade in the Cylindrocapsa alliance (Treubaria, Trochiscia, Elakatothrix). The relative position of the "Cylindrocapsa" clade within the Chlorophyceae remains uncertain. The enhanced taxon-sampling has not resolved the relative positions of the Oedogoniales, Chaetophorales or Chaetopeltidales. Furthermore, the Sphaeropleaceae are supported as members of the Sphaeropleales in only some analyses, raising concerns about the status of the order. Although based on a limited set of taxa (currently <10), a combined data approach reveals support for a monophyletic Trebouxiophyceae that includes the distinctive organisms, Geminella and Eremosphaera. The goal of a well-resolved phylogeny for the Chlorophyta remains just that, a goal. Achieving that goal obviously will require additional taxon sampling in the Prasinophyceae and Ulvophyceae, as well as, the Trebouxiophyceae. Moreover, it is clear that other genes (e.g., cp-atpB, cp-rbcL, cp-16S, mt-nad5) will be needed to help address problems of resolution based on the rDNA data alone. Supported by NSF DEB 9726588 and DEB 0129030. [source] Multiple origins of symbioses between ascomycetes and bryophytes suggested by a five-gene phylogenyCLADISTICS, Issue 3 2010Soili Stenroos Numerous species of microscopic fungi inhabit mosses and hepatics. They are severely overlooked and their identity and nutritional strategies are mostly unknown. Most of these bryosymbiotic fungi belong to the Ascomycota. Their fruit-bodies are extremely small, often reduced and simply structured, which is why they cannot be reliably identified and classified by their morphological and anatomical characters. A phylogenetic hypothesis of bryosymbiotic ascomycetes is presented. New sequences of 78 samples, including 61 bryosymbionts, were produced, the total amount of terminals being 206. Of these, 202 are Ascomycetes. Sequences from the following five gene loci were used: rDNA SSU, rDNA LSU, RPB2, mitochondrial rDNA SSU, and rDNA 5.8S. The program TNT was used for tree search and support value estimation. We show that bryosymbiotic fungi occur in numerous lineages, one of which represents a newly discovered lineage among the Ascomycota and exhibits a tripartite association with cyanobacteria and sphagna. A new genus Trizodia is proposed for this basal clade. Our results demonstrate that even highly specialized life strategies can be adopted multiple times during evolution, and that in many cases bryosymbionts appear to have evolved from saprobic ancestors. ,© The Willi Hennig Society 2009. [source] Phylogeny of the Eucoilinae (Hymenoptera: Cynipoidea: Figitidae)CLADISTICS, Issue 2 2002F.M. Fontal-Cazalla The Eucoilinae are a diverse and important group of parasitoids of Diptera, particularly in the tropics, but they are poorly known systematically and their generic classification is partly chaotic. Here, we present the first comprehensive cladistic analysis of higher eucoiline relationships. The analysis is based on 148 skeletal characters of adults documented in more than 1100 digital images available in an Internet-accessible database. The characters were coded for 45 taxa representing 35 eucoiline genera, spanning the entire diversity of the group, and 7 outgroup genera. Relationships were partly difficult to resolve and parsimony analysis under implied weights performed considerably better than analysis under uniform weights. The results support the monophyly of the Eucoilinae and show that eucoilines are most closely related to the figitid subfamilies Emargininae and Pycnostigminae, but are ambiguous concerning the exact relationships among these three lineages. Of the 6 eucoiline genus groups recognized by Nordlander in 1982 (Entomol. Scand. 13, 269,292), only 2 are supported as monophyletic: the Trybliographa and Kleidotoma groups. The Gronotoma group is a paraphyletic assemblage of two different basal clades of eucoilines. The Rhoptromeris group is unnatural and only the 2 core genera, Rhoptromeris and Trichoplasta, form a monophyletic lineage. The data are ambiguous concerning the Ganaspis group, which appears to be paraphyletic, and the Chrestosema group, which may be a good clade. Based on the results we propose a modified system of informal genus groups in the Eucoilinae and discuss putative synapomorphies supporting each genus group. The proposed relationships imply that the first eucoilines were parasitoids of leaf-mining agromyzids. The earliest split in the group was apparently between an Afrotropical and a Neotropical lineage, and much of the early radiation of the group occurred in these regions, particularly in the Neotropics. [source] |