Balanced Steady-state Free Precession (balanced + steady-state_free_precession)

Distribution by Scientific Domains


Selected Abstracts


Optimized balanced steady-state free precession magnetization transfer imaging

MAGNETIC RESONANCE IN MEDICINE, Issue 3 2007
O. Bieri
Abstract Balanced steady-state free precession (bSSFP) suffers from a considerable signal loss in tissues. This apparent signal reduction originates from magnetization transfer (MT) and may be reduced by an increase in repetition time or by a reduction in flip angle. In this work, MT effects in bSSFP are modulated by a modification of the bSSFP sequence scheme. Strong signal attenuations are achieved with short radio frequency (RF) pulses in combination with short repetition times, whereas near full, i.e., MT-free, bSSFP signal is obtained by a considerable prolongation of the RF pulse duration. Similar to standard methods, the MT ratio (MTR) in bSSFP depends on several sequence parameters. Optimized bSSFP protocol settings are derived that can be applied to various tissues yielding maximal sensitivity to MT while minimizing contribution from other impurities, such as off-resonances. Evaluation of MT in human brain using such optimized bSSFP protocols shows high correlation with MTR values from commonly used gradient echo (GRE) sequences. In summary, a novel method to generate MTR maps using bSSFP image acquisitions is presented and factors that optimize and influence this contrast are discussed. Magn Reson Med 58:511,518, 2007. © 2007 Wiley-Liss, Inc. [source]


Transverse relaxation time (T2) mapping in the brain with off-resonance correction using phase-cycled steady-state free precession imaging

JOURNAL OF MAGNETIC RESONANCE IMAGING, Issue 2 2009
Sean C.L. Deoni PhD
Abstract Purpose To investigate a new approach for more completely accounting for off-resonance affects in the DESPOT2 (driven equilibrium single pulse observation of T2) mapping technique. Materials and Methods The DESPOT2 method derives T2 information from fully balanced steady-state free precession (bSSFP) images acquired over multiple flip angles. Off-resonance affects, which present as bands of altered signal intensity throughout the bSSFP images, results in erroneous T2 values in the corresponding calculated maps. Radiofrequency (RF) phase-cycling, in which the phase of the RF pulse is incremented along the pulse train, offers a potential method for eliminating these artifacts. In this work we present a general method, referred to as DESPOT2, with full modeling (DESPOT2-FM), for deriving T2, as well as off-resonance frequency, from dual flip angle bSSFP data acquired with two RF phase increments. Results The method is demonstrated in vivo through the acquisition of whole-brain, 1 mm3 isotropic T2 maps at 3T and shown to provide near artifact-free maps, even in areas with steep susceptibility-induced gradients. Conclusion DESPOT2-FM offers an efficient method for acquiring high spatial resolution, whole-brain T2 maps at 3T with high precision and free of artifact. J. Magn. Reson. Imaging 2009;30:411,417. © 2009 Wiley-Liss, Inc. [source]


Automatic slice positioning (ASP) for passive real-time tracking of interventional devices using projection-reconstruction imaging with echo-dephasing (PRIDE)

MAGNETIC RESONANCE IN MEDICINE, Issue 4 2009
S. Patil
Abstract A novel and fast approach for passive real-time tracking of interventional devices using paramagnetic markers, termed "projection-reconstruction imaging with echo-dephasing" (PRIDE) is presented. PRIDE is based on the acquisition of echo-dephased projections along all three physical axes. Dephasing is preferably set to 4, within each projection ensuring that background tissues do not contribute to signal formation and thus appear heavily suppressed. However, within the close vicinity of the paramagnetic marker, local gradient fields compensate for the intrinsic dephasing to form an echo. Successful localization of the paramagnetic marker with PRIDE is demonstrated in vitro and in vivo in the presence of different types of off-resonance (air/tissue interfaces, main magnetic field inhomogeneities, etc). In order to utilize the PRIDE sequence for vascular interventional applications, it was interleaved with balanced steady-state free precession (bSSFP) to provide positional updates to the imaged slice using a dedicated real-time feedback link. Active slice positioning (ASP) with PRIDE is demonstrated in vitro, requiring approximately 20 ms for the positional update to the imaging sequence, comparable to existing active tracking methods. Magn Reson Med, 2009. © 2009 Wiley-Liss, Inc. [source]


On the transient phase of balanced SSFP sequences

MAGNETIC RESONANCE IN MEDICINE, Issue 4 2003
Klaus Scheffler
Abstract The signal intensity of balanced steady-state free precession (SSFP) imaging is a function of the proton density, T1, T2, flip angle (,), and repetition time (TR). The steady-state signal intensity that is established after about 5*T1/TR can be described analytically. The transient phase or the approach of the echo amplitudes to the steady state is an exponential decay from the initial amplitude after the first excitation pulse to the steady-state signal. An analytical expression of the decay rate of this transient phase is presented that is based on a simple analysis derived from the Bloch equations. The decay rate is a weighted average of the T1 and T2 relaxation times, where the weighting is determined by the flip angle of the excitation pulses. Thus, balanced SSFP imaging during the transient phase can provide various contrasts depending on the flip angle and the number of excitation pulses applied before the acquisition of the central k -space line. In addition, transient imaging of hyperpolarized nuclei, such as 3He, 129Xe, or 13C, can be optimized according to their T1 and T2 relaxation times. Magn Reson Med 49:781,783, 2003. © 2003 Wiley-Liss, Inc. [source]