Home About us Contact | |||
Bacterial Species (bacterial + species)
Kinds of Bacterial Species Selected AbstractsDual-association of gnotobiotic Il-10,/, mice with 2 nonpathogenic commensal bacteria induces aggressive pancolitisINFLAMMATORY BOWEL DISEASES, Issue 12 2007Sandra C. Kim MD Abstract Background: Monoassociating gnotobiotic IL-10-deficient (,/,) mice with either nonpathogenic Enterococcus faecalis or a nonpathogenic Escherichia coli strain induces T-cell-mediated colitis with different kinetics and anatomical location (E. faecalis: late onset, distal colonic; E. coli: early onset, cecal). Hypothesis: E. faecalis and E. coli act in an additive manner to induce more aggressive colitis than disease induced by each bacterial species independently. Methods: Germ-free (GF) inbred 129S6/SvEv IL-10,/, and wildtype (WT) mice inoculated with nonpathogenic E. faecalis and/or E. coli were killed 3,7 weeks later. Colonic segments were scored histologically for inflammation (0 to 4) or incubated in media overnight to measure spontaneous IL-12/IL-23p40 secretion. Bacterial species were quantified by serial dilution and plated on culture media. Mesenteric lymph node (MLN) CD4+ cells were stimulated with antigen-presenting cells pulsed with bacterial lysate (E. faecalis, E. coli, Bacteroides vulgatus) or KLH (unrelated antigen control). IFN-, and IL-17 levels were measured in the supernatants. Results: Dual-associated IL-10,/, (but not WT) mice developed mild-to-moderate pancolitis by 3 weeks that progressed to severe distal colonic-predominant pancolitis with reactive atypia and duodenal inflammation by 7 weeks. NF-,B was activated in the duodenum and colon in dual-associated IL-10,/, × NF-,BEGFP mice. The aggressiveness of intestinal inflammation and the degree of antigen-specific CD4+ cell activation were greater in dual- versus monoassociated IL-10,/, mice. Conclusion: Two commensal bacteria that individually induce phenotypically distinct colitis in gnotobiotic IL-10,/, mice act additively to induce aggressive pancolitis and duodenal inflammation. (Inflamm Bowel Dis 2007) [source] Bleeding on probing differentially relates to bacterial profiles: the Oral Infections and Vascular Disease Epidemiology StudyJOURNAL OF CLINICAL PERIODONTOLOGY, Issue 6 2008Ryan T. Demmer Abstract Aim: Various bacterial species are differentially prevalent in periodontal health, gingivitis or periodontitis. We tested the independent associations between three bacterial groupings and gingival inflammation in an epidemiological study. Material and Methods: In 706 Oral Infections and Vascular Disease Epidemiology Study (INVEST) participants 55 years, bleeding on probing (BoP), pocket depth (PD) and subgingival plaque samples (n=4866) were assessed in eight sites per mouth. Eleven bacterial species were quantitatively assayed and grouped as follows: (i) aetiologic burden (EB, Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Treponema denticola, Tannerella forsythia); (ii) putative burden (PB, Campylobacter rectus, Eikenella corrodens, Fusobacterium nucleatum, Micromonas micros, Prevotella intermedia); (iii) health-associated burden (HAB, Actinomyces naeslundii, Veillonella parvula). Results: After mutual adjustment for EB, PB and HAB, the BoP prevalence increased by 45% ( p<0.0001) across increasing quartiles of EB while BoP decreased by 13% ( p<0.0001) across increasing quartiles of HAB. Mean PD increased 0.8 mm and decreased 0.3 mm from the first to fourth quartiles of EB (p<0.0001) and HAB ( p<0.0001), respectively. Among 1214 plaque samples with fourth quartile EB, 60% were collected from sites with PD 3 mm. Conclusion: Bacterial species believed to be aetiologically related to periodontitis were associated with BoP in sites with minimal PD and/or attachment level (AL). Species presumed to be associated with periodontal health demonstrated inverse associations with BoP. [source] Detection of bacterial DNA by PCR and reverse hybridization in the 16S rRNA gene with particular reference to neonatal septicemiaACTA PAEDIATRICA, Issue 2 2001S Shang Aim: The clinical diagnosis of sepsis is difficult, particularly in neonates. It is necessary to develop a rapid and reliable method for detecting bacteria in blood and cerebrospinal fluid (CSF) Polymerase chain reaction (PCR) and reverse hybridization of the 16S rRNA gene would permit fast and sensitive determination of the presence of bacteria and differentiate gram-positive bacteria from gram-negative ones in clinical specimens. Methods: We developed a pair of primers according to the gene encoding 16SrRNA found in all bacteria. DNA fragments from different bacterial species and from clinical samples were detected with PCR, and with reverse hybridization using a universal bacterial probe, a gram-positive probe and a gram-negative probe. Results: A 371 bp DNA fragment was amplified from 20 different bacterial species. No signal was observed when human DNA and viruses were used as templates. The sensitivity could be improved to 10T -12 g. All 26 culture-positive clinical samples (22 blood samples and 4 CSF samples) were positive with PCR. The gram-negative and gram-positive probes hybridized to clinical samples and to known bacterial controls, as predicted by Gram's stain characteristics. Conclusions: Our results suggest that the method of PCR and reverse hybridization is rapid, sensitive and specific in detecting bacterial infections. This finding may be significant in the clinical diagnosis of sepsis in neonates. [source] Dynamics of bacterial cytoskeletal elementsCYTOSKELETON, Issue 11 2009Peter L. Graumann Abstract Bacterial cytoskeletal elements are involved in an astonishing spectrum of cellular functions, from cell shape determination to cell division, plasmid segregation, the positioning of membrane-associated proteins and membrane structures, and other aspects of bacterial physiology. Interestingly, these functions are not necessarily conserved, neither between different bacterial species nor between bacteria and eukaryotic cells. The flexibility of cytoskeletal elements in performing different tasks is amazing and emphasises their very early development during evolution. This review focuses on the dynamics of cytoskeletal elements from bacteria. Cell Motil. Cytoskeleton 2009. © 2009 Wiley-Liss, Inc. [source] The use of systemic antibiotics in the treatment of chronic woundsDERMATOLOGIC THERAPY, Issue 6 2006Robert Hernandez ABSTRACT:, The role of microorganisms in the etiology and persistence of chronic wounds remains poorly understood. The chronic wound bed houses a complex microenvironment that typically includes more than one bacterial species. Difficulty lies in determining when the presence of bacteria impedes wound healing, thereby warranting intervention. Indications for antibiotic therapy and optimal treatment regimens are ill defined. The goal of this article is to describe the appropriate role of systemic antibiotics in the management of chronic wounds. A common sense approach will be offered based on six clinically pertinent questions: ,,Is infection present? ,,Are systemic antibiotics necessary? ,,Should treatment be enteral or parenteral? ,,What antibiotic or combination of antibiotics should be used? ,,What should be the duration of therapy? ,,What special circumstances are present (i.e., concomitant illnesses, potential drug,drug interactions) that can impact therapy? [source] Biogeography of the marine actinomycete SalinisporaENVIRONMENTAL MICROBIOLOGY, Issue 11 2006Paul R. Jensen Summary Marine actinomycetes belonging to the genus Salinispora were cultured from marine sediments collected at six geographically distinct locations. Detailed phylogenetic analyses of both 16S rRNA and gyrB gene sequences reveal that this genus is comprised of three distinct but closely related clades corresponding to the species Salinispora tropica, Salinispora arenicola and a third species for which the name ,Salinispora pacifica' is proposed. Salinispora arenicola was cultured from all locations sampled and provides clear evidence for the cosmopolitan distribution of an individual bacterial species. The co-occurrence of S. arenicola with S. tropica and S. pacifica suggests that ecological differentiation as opposed to geographical isolation is driving speciation within the genus. All Salinispora strains cultured to date share greater than 99% 16S rRNA gene sequence identity and thus comprise what has been described as a microdiverse ribotype cluster. The description of this cluster as a new genus, containing multiple species, provides clear evidence that fine-scale 16S rDNA sequence analysis can be used to delineate among closely related species and that more conservative operational taxonomic unit values may significantly underestimate global species diversity. [source] Combined bromodeoxyuridine immunocapture and terminal-restriction fragment length polymorphism analysis highlights differences in the active soil bacterial metagenome due to Glomus mosseae inoculation or plant speciesENVIRONMENTAL MICROBIOLOGY, Issue 12 2005Veronica Artursson Summary High numbers of bacteria are associated with arbuscular mycorrhizal (AM) fungi, but their functions and in situ activities are largely unknown and most have never been characterized. The aim of the present study was to study the impact of Glomus mosseae inoculation and plant type on the active bacterial communities in soil by using a molecular approach, bromodeoxyuridine (BrdU) immunocapture in combination with terminal-restriction fragment length polymorphism (T-RFLP). This approach combined with sequence information from clone libraries, enabled the identification of actively growing populations, within the total bacterial community. Distinct differences in active bacterial community compositions were found according to G. mosseae inoculation, treatment with an antifungal compound (Benomyl) and plant type. The putative identities of the dominant bacterial species that were activated as a result of G. mosseae inoculation were found to be mostly uncultured bacteria and Paenibacillus species. These populations may represent novel bacterial groups that are able to influence the AM relationship and its subsequent effect on plant growth. [source] Multiple displacement amplification as a pre-polymerase chain reaction (pre-PCR) to process difficult to amplify samples and low copy number sequences from natural environmentsENVIRONMENTAL MICROBIOLOGY, Issue 7 2005Juan M. Gonzalez Summary Microbial assessment of natural biodiversity is usually achieved through polymerase chain reaction (PCR) amplification. Deoxyribonucleic acid (DNA) sequences from natural samples are often difficult to amplify because of the presence of PCR inhibitors or to the low number of copies of specific sequences. In this study, we propose a non-specific preamplification procedure to overcome the presence of inhibitors and to increase the number of copies prior to carrying out standard amplification by PCR. The pre-PCR step is carried out through a multiple displacement amplification (MDA) technique using random hexamers as priming oligonucleotides and ,29 DNA polymerase in an isothermal, whole-genome amplification reaction. Polymerase chain reaction amplification using specific priming oligonucleotides allows the selection of the sequences of interest after a preamplification reaction from complex environmental samples. The procedure (MDA-PCR) has been tested on a natural microbial community from a hypogean environment and laboratory assemblages of known bacterial species, in both cases targeting the small subunit ribosomal RNA gene sequences. Results from the natural community showed successful amplifications using the two steps protocol proposed in this study while standard, direct PCR amplification resulted in no amplification product. Amplifications from a laboratory assemblage by the two-step proposed protocol were successful at bacterial concentrations ,,10-fold lower than standard PCR. Amplifications carried out in the presence of different concentrations of fulvic acids (a soil humic fraction) by the MDA-PCR protocol generated PCR products at concentrations of fulvic acids over 10-fold higher than standard PCR amplifications. The proposed procedure (MDA-PCR) opens the possibility of detecting sequences represented at very low copy numbers, to work with minute samples, as well as to reduce the negative effects on PCR amplifications of some inhibitory substances commonly found in environmental samples. [source] The structure of a local population of phytopathogenic Pseudomonas brassicacearum from agricultural soil indicates development under purifying selection pressureENVIRONMENTAL MICROBIOLOGY, Issue 3 2001Johannes Sikorski Among the isolates of a bacterial community from a soil sample taken from an agricultural plot in northern Germany, a population consisting of 119 strains was obtained that was identified by 16S rDNA sequencing and genomic fingerprinting as belonging to the recently described species Pseudomonas brassicacearum. Analysis of the population structure by allozyme electrophoresis (11 loci) and random amplified polymorphic DNA,polymerase chain reaction (RAPD,PCR; four primers) showed higher resolution with the latter method. Both methods indicated the presence of three lineages, one of which dominated strongly. Stochastic tests derived from the neutral theory of evolution (including Slatkin's exact test, Watterson's homozygosity test and the Tajima test) indicated that the population had developed under strong purifying selection pressure. The presence of strains clearly divergent from the majority of the population can be explained by in situ evolution or by influx of strains as a result of migration or both. Phytopathogenicity of a P. brassicacearum strain determined with tomato plants reached the level obtained with the type strain of the known pathogen Pseudomonas corrugata. The results show that a selective sweep was identified in a local population. Previously, a local selective sweep had not been seen in several populations of different bacterial species from a variety of environmental habitats. [source] Horizontal transfer of an exopolymer complex from one bacterial species to anotherENVIRONMENTAL MICROBIOLOGY, Issue 4 2000D. Osterreicher-Ravid Alasan, the exocellular polymeric emulsifier produced by Acinetobacter radioresistens KA53 was shown to bind to the surface of Sphingomonas paucimobilis EPA505 and Acinetobacter calcoaceticus RAG-1. The presence of alasan on the surface of S. paucimobilis EPA505 and A. calcoaceticus RAG-1 caused a decrease in their cell-surface hydrophobicities. Binding was proportional to the concentration of recipient cells and input alasan. At the highest concentration of A. calcoaceticus RAG-1 (4 × 109 ml,1) and alasan (20 µg ml,1) tested, 75% of the alasan was cell bound. Alasan binding was measured by the loss of emulsifying activity and alasan protein and polysaccharide from the aqueous phase after incubation of alasan with the recipient cells. In addition, alasan was visualized on the surface of the recipient cells by staining with anti-alasan antibodies and rhodamine-labelled secondary antibodies. Moreover, when the alasan-producing A. radioresistens KA53 was grown together with A. calcoaceticus RAG-1, alasan was released from the producing strain and became bound to the recipient RAG-1 cells, as demonstrated by fluorescence microscopy. This horizontal transfer of exopolymers from one bacterial species to another has significant implications in natural microbial communities, coaggregation and biofilms. [source] Phylogenetic relationship and antifouling activity of bacterial epiphytes from the marine alga Ulva lactucaENVIRONMENTAL MICROBIOLOGY, Issue 3 2000Brief report It is widely accepted that bacterial epiphytes can inhibit the colonization of surfaces by common fouling organisms. However, little information is available regarding the diversity and properties of these antifouling bacteria. This study assessed the antifouling traits of five epiphytes of the common green alga, Ulva lactuca. All isolates were capable of preventing the settlement of invertebrate larvae and germination of algal spores. Three of the isolates also inhibited the growth of a variety of bacteria and fungi. Their phylogenetic positions were determined by 16S ribosomal subunit DNA sequencing. All isolates showed a close affiliation with the genus Pseudoalteromonas and, in particular, with the species P. tunicata. Strains of this bacterial species also display a variety of antifouling activities, suggesting that antifouling ability may be an important trait for members of this genus to be highly successful colonizers of animate surfaces and for such species to protect their host against fouling. [source] Antibiotic-Loaded PLGA Nanofibers for Wound Healing Applications,ADVANCED ENGINEERING MATERIALS, Issue 4 2010David A. Soscia Incorporating antibiotics into biocompatible nanoscale non-woven fibrous mats could provide utility for wound healing applications and for incorporation into wound dressing materials. In this study, the antibiotic chloramphenicol (Cm) was incorporated into electrospun poly(lactic-co-glycolic acid) (PLGA) nanofibers, which were then tested for inhibition of bacterial growth for multiple bacterial species (Escherichia coli, Staphylococcus aureus, Bacillus cereus, Salmonella typhimurium, and Pseudomonas aeruginosa). In addition, the cytotoxicity of Cm-PLGA nanofibers was examined for two types of mammalian cells including mouse embryonic stem cells and fibroblasts. Electrospun PLGA nanofibers containing Cm were able to reduce bacterial growth on solid agar plates for all species except for P. aeruginosa. In liquid culture, Cm-loaded nanofibers inhibited growth for E. coli, B. cereus and S. typhimurium by 93% or greater, while P. aeruginosa and S. aureus growth was inhibited by 42% and 56%, respectively. Cm-loaded nanofibers showed limited cytoxicity on fibroblasts and embryonic stem cells, with viability greater than 96% for all conditions tested. These results suggest that Cm can be successfully incorporated into electrospun nanofibers and that these fibers could be used for wound healing applications with minimal cytotoxicity to the surrounding tissue. [source] Influence of residual bacteria on periapical tissue healing after chemomechanical treatment and root filling of experimentally infected monkey teethEUROPEAN JOURNAL OF ORAL SCIENCES, Issue 4 2006Lars Fabricius The purpose of this study was twofold: first, to determine the influence on the healing of the periapical tissues when selected bacterial strains and combinations thereof remain after root canal treatment; and, second, the relationship to healing of the quality of the root filling. In eight monkeys, 175 root canals, previously infected with combinations of four or five bacterial strains and with radiographically verified apical periodontitis, were endodontically treated, bacteriologically controlled, and permanently obturated. After 2,2.5 yr, the periapical regions were radiographically and histologically examined. Of these teeth, 48 root canals were also examined for bacteria remaining after removal of the root fillings. When bacteria remained after the endodontic treatment, 79% of the root canals showed non-healed periapical lesions, compared with 28% where no bacteria were found. Combinations of residual bacterial species were more frequently related to non-healed lesions than were single strains. When no bacteria remained, healing occurred independently of the quality of the root filling. In contrast, when bacteria remained, there was a greater correlation with non-healing in poor-quality root fillings than in technically well-performed fillings. In root canals where bacteria were found after removal of the root filling, 97% had not healed, compared with 18% for those root canals with no bacteria detected. The present study demonstrates the importance of obtaining a bacteria-free root canal system before permanent root filling in order to achieve optimal healing conditions for the periapical tissues. [source] Increased bacterial load in shrimp hemolymph in the absence of prophenoloxidaseFEBS JOURNAL, Issue 18 2009Fernand F. Fagutao Invertebrates rely on their innate immune responses to protect themselves from pathogens, one of which is melanization of bacteria mediated by the activation of phenoloxidase (PO). Furthermore, invertebrate hemolymph, even that of healthy individuals, has been shown to contain bacterial species. The mechanisms that prevent these bacteria from proliferating and becoming deleterious to the host are, however, poorly understood. Here, we show that knocking down the activity of the inactive precursor of PO [prophenoloxidase (proPO)] by RNA interference resulted in a significant increase in the bacterial load of kuruma shrimp, Marsupenaeus japonicus, even in the absence of a bacterial or viral challenge. Silencing of proPO also led to a sharp increase in shrimp mortality. In addition, the hemolymph of proPO-depleted shrimp had significantly lower hemocyte counts and PO activity than control samples. Microarray analysis after proPO silencing also showed a decrease in the expression of a few antimicrobial peptides, but no effect on the expression of the genes involved in the clotting system. Treatment with antibiotics prior to and after proPO dsRNA injection, to counteract the loss of proPO, resulted in a significant increase in shrimp survival. Our results therefore show that the absence of proPO renders the shrimp incapable of controlling bacteria present in the hemolymph, and that proPO is therefore essential for its survival. [source] Mycobacterium tuberculosis possesses a functional enzyme for the synthesis of vitamin C, L -gulono-1,4-lactone dehydrogenaseFEBS JOURNAL, Issue 19 2006Beata A. Wolucka The last step of the biosynthesis of l -ascorbic acid (vitamin C) in plants and animals is catalyzed by l -gulono-1,4-lactone oxidoreductases, which use both l -gulono-1,4-lactone and l -galactono-1,4-lactone as substrates. l -Gulono-1,4-lactone oxidase is missing in scurvy-prone, vitamin C-deficient animals, such as humans and guinea pigs, which are also highly susceptible to tuberculosis. A blast search using the rat l -gulono-1,4-lactone oxidase sequence revealed the presence of closely related orthologs in a limited number of bacterial species, including several pathogens of human lungs, such as Mycobacterium tuberculosis, Pseudomonas aeruginosa, Burkholderia cepacia and Bacillus anthracis. The genome of M. tuberculosis, the etiologic agent of tuberculosis, encodes a protein (Rv1771) that shows 32% identity with the rat l -gulono-1,4-lactone oxidase protein. The Rv1771 gene was cloned and expressed in Escherichia coli, and the corresponding protein was affinity-purified and characterized. The FAD-binding motif-containing Rv1771 protein is a metalloenzyme that oxidizes l -gulono-1,4-lactone (Km 5.5 mm) but not l -galactono-1,4-lactone. The enzyme has a dehydrogenase activity and can use both cytochrome c (Km 4.7 µm) and phenazine methosulfate as exogenous electron acceptors. Molecular oxygen does not serve as a substrate for the Rv1771 protein. Dehydrogenase activity was measured in cellular extracts of a Mycobacterium bovis BCG strain. In conclusion, M. tuberculosis produces a novel, highly specific l -gulono-1,4-lactone dehydrogenase (Rv1771) and has the capacity to synthesize vitamin C. [source] Expression of mitochondrial HMGCoA synthase and glutaminase in the colonic mucosa is modulated by bacterial speciesFEBS JOURNAL, Issue 1 2004Claire Cherbuy The expression of the colonic mitochondrial 3-hydroxy 3-methyl glutaryl CoA (mHMGCoA) synthase, a key control site of ketogenesis from butyrate, is lower in germ-free (GF) than in conventional (CV) rats. In contrast, the activity of glutaminase is higher. The objective of this study was to investigate whether the intestinal flora can affect gene expression through short chain fatty acid (SCFA) and butyrate production. GF rats were inoculated with a conventional flora (Ino-CV) or with a bacterial strain producing butyrate (Clostridium paraputrificum, Ino- Cp) or not (Bifidobacterium breve, Ino- Bb). In the Ino-CV rats, mHMGCoA synthase expression was restored to the CV values 2 days after the inoculation, i.e. concomitantly with SCFA production. In the Ino- Cp group, but not in the Ino- Bb group, mHMGCoA synthase and glutaminase were expressed at the level observed in the CV rats. These data suggest that the intestinal flora, through butyrate production, could control the expression of colonic mHMGCoA synthase and glutaminase. These modifications in gene expression by butyrate in vivo seem unrelated to a modification of histone acetylation. [source] Identification of crucial residues for the antibacterial activity of the proline-rich peptide, pyrrhocoricinFEBS JOURNAL, Issue 17 2002Goran Kragol Members of the proline-rich antibacterial peptide family, pyrrhocoricin, apidaecin and drosocin appear to kill responsive bacterial species by binding to the multihelical lid region of the bacterial DnaK protein. Pyrrhocoricin, the most potent among these peptides, is nontoxic to healthy mice, and can protect these animals from bacterial challenge. A structure,antibacterial activity study of pyrrhocoricin against Escherichia coli and Agrobacterium tumefaciens identified the N-terminal half, residues 2,10, the region responsible for inhibition of the ATPase activity, as the fragment that contains the active segment. While fluorescein-labeled versions of the native peptides entered E. coli cells, deletion of the C-terminal half of pyrrhocoricin significantly reduced the peptide's ability to enter bacterial or mammalian cells. These findings highlighted pyrrhocoricin's suitability for combating intracellular pathogens and raised the possibility that the proline-rich antibacterial peptides can deliver drug leads into mammalian cells. By observing strong relationships between the binding to a synthetic fragment of the target protein and antibacterial activities of pyrrhocoricin analogs modified at strategic positions, we further verified that DnaK was the bacterial target macromolecule. Inaddition, the antimicrobial activity spectrum of native pyrrhocoricin against 11 bacterial and fungal strains and the binding of labeled pyrrhocoricin to synthetic DnaK D-E helix fragments of the appropriate species could be correlated. Mutational analysis on a synthetic E. coli DnaK fragment identified a possible binding surface for pyrrhocoricin. [source] Biofilms in chronic bacterial prostatitis (NIH-II) and in prostatic calcificationsFEMS IMMUNOLOGY & MEDICAL MICROBIOLOGY, Issue 3 2010Sandra Mazzoli Abstract The prevalence of inflammatory conditions of the prostate gland is increasing. In Italy, there is a high incidence of prostatitis (13.3%), also accompanied by prostatic calcifications. Cat NIH-II chronic bacterial prostatitis (CBPs) are the most frequent. Their aetiology theoretically involves the whole range of bacterial species that are able to form biofilms and infect prostate cells. The aim of our study was to isolate potential biofilm-producing bacteria from CBP patients, to evaluate their ability to produce in vitro biofilms, and to characterize intraprostatic bacteria and prostatic calcifications using scanning electron microscopy. The 150 clinical bacterial strains isolated from chronic prostatitis NIH-II patients were: 50 Enterococcus faecalis; 50 Staphylococcus spp.; 30 Escherichia coli; 20 gram-negative miscellanea. Quantitative assay of biofilm production and adhesion was performed according to the classic Christensen microwell assay. Isolates were classified as nonproducers, weak, moderate or strong producers. The majority of E. coli, gram-negative bacteria, Staphylococci and Enterococci strains were strong or medium producers: 63,30%, 75,15%, 46,36%, and 58,14%, respectively. Prostatic calcifications consisted of bacteria-like forms similar to the species isolated from biological materials and calcifications of patients. Our study proves, for the first time, that bacterial strains able to produce biofilms consistently are present in CBP. Additionally, prostatic calcifications are biofilm-related. [source] Helicobacter equorum: prevalence and significance for horses and humansFEMS IMMUNOLOGY & MEDICAL MICROBIOLOGY, Issue 1 2009Hilde Moyaert Abstract Helicobacter equorum colonizes the caecum, colon and rectum of horses. The agent is highly prevalent in <6-month-old foals. In adult horses, the prevalence of H. equorum seems to be rather low, but these animals may harbour low, subdetectable numbers of this microorganism in their intestines. So far, no association could be made between the presence of H. equorum and clinical disease or intestinal lesions in adult horses. Further research is necessary to elucidate the pathogenic potential of this bacterial species towards young foals. Helicobacter equorum DNA was not detected in human faeces, indicating that this microorganism does not commonly spread from horses towards humans. [source] Ecology and characterization of polyhydroxyalkanoate-producing microorganisms on and in plantsFEMS MICROBIOLOGY ECOLOGY, Issue 1 2009Ilona Gasser Abstract Polyhydroxyalkanoates are energy reserve polymers produced by bacteria to survive periods of starvation in natural habitats. Little is known about the ecology of polyhydroxyalkanoate-producing bacteria. To analyse the occurrence of this specific group on/in seven different plant species, a combined strategy containing culture-dependent and -independent methods was applied. Using microbial fingerprint techniques (single-strand conformation polymorphism analysis with specific primers for phaC gene encoding the key enzyme of the polyhydroxyalkanoate synthesis), a high number of bands were especially found for the rhizosphere. Furthermore, cluster analysis revealed plant species-specific communities. Isolation of bacteria, recognition of brightly refractile cytoplasmatic inclusions, lipophilic stainings and a PCR strategy targeted on the phaC gene were used as a culture-dependent strategy for the detection of polyhydroxyalkanoate-producing bacteria. Results again represent a high degree of plant specificity: the rhizosphere of sugar beet contained the highest number of positive strains. This was confirmed by quantitative PCR: the relative copy number of phaC was statistically and significantly enhanced in all rhizospheres in comparison with bulk soil. New polyhydroxyalkanoate-producing bacterial species were detected: for example, Burkholderia terricola, Lysobacter gummosus, Pseudomonas extremaustralis, Pseudomonas brassicacearum and Pseudomonas orientalis. Our results confirm the hypothesis that the rhizosphere is an interesting hidden reservoir for polyhydroxyalkanoate producers. [source] Response of bacterioplankton community structures to hydrological conditions and anthropogenic pollution in contrasting subtropical environmentsFEMS MICROBIOLOGY ECOLOGY, Issue 3 2009Rui Zhang Abstract Bacterioplankton community structures under contrasting subtropical marine environments (Hong Kong waters) were analyzed using 16S rRNA gene denaturing gradient gel electrophoresis (DGGE) and subsequent sequencing of predominant bands for samples collected bimonthly from 2004 to 2006 at five stations. Generally, bacterial abundance was significantly higher in the summer than in the winter. The general seasonal variations of the bacterial community structure, as indicated by cluster analysis of the DGGE pattern, were best correlated with temperature at most stations, except for the station close to a sewage discharge outfall, which was best explained by pollution-indicating parameters (e.g. biochemical oxygen demand). Anthropogenic pollutions appear to have affected the presence and the intensity of DGGE bands at the stations receiving discharge of primarily treated sewage. The relative abundance of major bacterial species, calculated by the relative intensity of DGGE bands after PCR amplification, also indicated the effects of hydrological or seasonal variations and sewage discharges. For the first time, a systematic molecular fingerprinting analysis of the bacterioplankton community composition was carried out along the environmental and pollution gradient in a subtropical marine environment, and it suggests that hydrological conditions and anthropogenic pollutions altered the total bacterial community as well as the dominant bacterial groups. [source] Isolation and identification of equol-producing bacterial strains from cultures of pig faecesFEMS MICROBIOLOGY LETTERS, Issue 1 2008Zhuo-Teng Yu Abstract Transformation of daidzein to equol was compared during fermentation of three growth media inoculated with faeces from Erhualian piglets, but equol was produced from only one medium, M1. Two equol-producing strains (D1 and D2) were subsequently isolated using medium M1. Both strains were identified as Eubacterium sp., on the basis of morphological and physiological characteristics, and 16S rRNA gene sequence analysis showed that strains D1 and D2 were most closely related to previously characterized daidzein-metabolizing bacteria isolated from human faecal and rumen samples, respectively. This suggests that the ability to metabolize daidzein can be found among bacteria present within the mammalian intestine. The results provided the first account of conversion of daidzein directly to equol by bacterial species from farm animals. These strains may be of importance to the improvement of animal performance, and the use of medium M1 could provide a simple way to isolate bacterial strains capable of transforming daidzein into equol. [source] Interactions between salivary Bifidobacterium adolescentis and other oral bacteria: in vitro coaggregation and coadhesion assaysFEMS MICROBIOLOGY LETTERS, Issue 2 2008Seiji Nagaoka Abstract Coaggregation assays were performed to investigate interactions between oral Bifidobacterium adolescentis and other oral bacterial species. Bifidobacterium adolescentis OLB6410 isolated from the saliva of healthy humans did not coaggregate with Actinomyces naeslundii JCM8350, Streptococcus mitis OLS3293, Streptococcus sanguinis JCM5708, Veillonella parvula ATCC17745 or Porphyromonas gingivalis OB7124, but it did coaggregate with Fusobacterium nucleatum JCM8532. Subsequent examination of biofilm formation on saliva-coated hydroxyapatite discs using FISH revealed that B. adolescentis OLB6410 could not directly adhere to the coated discs. It did, however, adhere to biofilms of A. naeslundii, V. parvula, and F. nucleatum, although it did not coaggregate with A. naeslundii nor with V. parvula. These results suggest that the adhesion of B. adolescentis to tooth surfaces is mediated by other oral bacteria. Heat- or proteinase K-treated F. nucleatum could not coaggregate with B. adolescentis. Similarly, the coaggregation and coadhesion of proteinase K-treated B. adolescentis were strongly inhibited. It is therefore probable that proteinaceous factors on the cellular surface of B. adolescentis and F. nucleatum are involved in their interaction. The data presented in this study add to our understanding of bifidobacterial colonization in the human oral cavity. [source] Genome-wide expression analysis of iron regulation in Burkholderia pseudomallei and Burkholderia mallei using DNA microarraysFEMS MICROBIOLOGY LETTERS, Issue 2 2005Apichai Tuanyok Abstract Burkholderia pseudomallei and B. mallei are the causative agents of melioidosis and glanders, respectively. As iron regulation of gene expression is common in bacteria, in the present studies, we have used microarray analysis to examine the effects of growth in different iron concentrations on the regulation of gene expression in B. pseudomallei and B. mallei. Gene expression profiles for these two bacterial species were similar under high and low iron growth conditions irrespective of growth phase. Growth in low iron led to reduced expression of genes encoding most respiratory metabolic systems and proteins of putative function, such as NADH-dehydrogenases, cytochrome oxidases, and ATP-synthases. In contrast, genes encoding siderophore-mediated iron transport, heme-hemin receptors, and a variety of metabolic enzymes for alternative metabolism were induced under low iron conditions. The overall gene expression profiles suggest that B. pseudomallei and B. mallei are able to adapt to the iron-restricted conditions in the host environment by up-regulating an iron-acquisition system and by using alternative metabolic pathways for energy production. The observations relative to the induction of specific metabolic enzymes during bacterial growth under low iron conditions warrants further experimentation. [source] Chemotaxis in Vibrio choleraeFEMS MICROBIOLOGY LETTERS, Issue 1 2004Markus A. Boin Abstract The ability of motile bacteria to swim toward or away from specific environmental stimuli, such as nutrients, oxygen, or light provides cells with a survival advantage, especially under nutrient-limiting conditions. This behavior, called chemotaxis, is mediated by the bacteria changing direction by briefly reversing the direction of rotation of the flagellar motors. A sophisticated signal transduction system, consisting of signal transducer proteins, a histidine kinase, a response regulator, a coupling protein, and enzymes that mediate sensory adaptation, relates the input signal to the flagellar motor. Chemotaxis has been extensively studied in bacteria such as Escherichia coli and Salmonella enterica serovar Typhimurium, and depends on the activity of single copies of proteins in a linear pathway. However, growing evidence suggests that chemotaxis in other bacteria is more complex with many bacterial species having multiple paralogues of the various chemotaxis genes found in E. coli and, in most cases, the detailed functions of these potentially redundant genes have not been elucidated. Although the completed genome of Vibrio cholerae, the causative agent of cholera, predicted a multitude of genes with homology to known chemotaxis-related genes, little is known about their relative contribution to chemotaxis or other cellular functions. Furthermore, the role of chemotaxis during the environmental or infectious phases of this organism is not yet fully understood. This review will focus on the complex relationship between chemotaxis and virulence in V. cholerae. [source] Characterisation of symbionts of entomopathogenic nematodes by universally primed-PCR (UP-PCR) and UP-PCR product cross-hybridisationFEMS MICROBIOLOGY LETTERS, Issue 1 2002O. Nielsen Abstract This work introduces and demonstrates the applicability of universally primed-PCR (UP-PCR) for differentiating bacterial symbionts of entomopathogenic nematodes. Furthermore, typing by UP-PCR product cross-hybridisation was successfully introduced to cluster the bacterial strains. The work was initiated by isolating 10 isolates of Photorhabdus temperata (S172) from the nematode host Heterorhabditis sp. (DK172) and 12 isolates of Xenorhabdus bovienii (S1) from the nematode Steinernema feltiae (DK1). The isolates were compared by UP-PCR using different primers. The two bacterial species (P. temperata and X. bovienii) could be distinguished on the basis of the banding pattern whereas isolates isolated from the same nematode host had identical banding patterns. Three isolates obtained from DK172 and DK1, respectively, were then selected along with a number of reference strains (Hb, HP88, C1, K122, HSH2, HL81, T228, 61, AN6, Q58) and further characterised by UP-PCR product cross-hybridisation. The Xenorhabdus strains (Q58, AN6, 61, T228, S1) represented three species and these species were separated by the hybridisation technique. The Photorhabdus strains (Hb, HP88, C1, K122, HSH2, HL81, S172) represented two species and were also separated according to this in the cross-hybridisation. Within each species of Photorhabdus, two subgroups were formed as a result of intensity of the hybridisation signals. This grouping was in agreement with previous studies in other laboratories. [source] Cytolethal distending toxin (CDT): a bacterial weapon to control host cell proliferation?FEMS MICROBIOLOGY LETTERS, Issue 2 2001Jean de Rycke Abstract Cytolethal distending toxins (CDT) constitute a family of genetically related bacterial protein toxins able to stop the proliferation of numerous cell lines. This effect is due to their ability to trigger in target cells a signaling pathway that normally prevents the transition between the G2 and the M phase of the cell cycle. Produced by several unrelated Gram-negative mucosa-associated bacterial species, CDTs are determined by a cluster of three adjacent genes (cdtA, cdtB, cdtC) encoding proteins whose respective role is not yet fully elucidated. The CDT-B protein presents sequence homology to several mammalian and bacterial phosphodiesterases, such as DNase I. The putative nuclease activity of CDT-B, together with the activation by CDT of a G2 cell cycle checkpoint, strongly suggests that CDT induces an as yet uncharacterized DNA alteration. However, the effective entry of CDT into cells and subsequent translocation into the nucleus have not yet been demonstrated by direct methods. The relationship between the potential DNA-damaging properties of this original family of toxins and their role as putative virulence factors is discussed. [source] Genome-scale models of bacterial metabolism: reconstruction and applicationsFEMS MICROBIOLOGY REVIEWS, Issue 1 2009Maxime Durot Abstract Genome-scale metabolic models bridge the gap between genome-derived biochemical information and metabolic phenotypes in a principled manner, providing a solid interpretative framework for experimental data related to metabolic states, and enabling simple in silico experiments with whole-cell metabolism. Models have been reconstructed for almost 20 bacterial species, so far mainly through expert curation efforts integrating information from the literature with genome annotation. A wide variety of computational methods exploiting metabolic models have been developed and applied to bacteria, yielding valuable insights into bacterial metabolism and evolution, and providing a sound basis for computer-assisted design in metabolic engineering. Recent advances in computational systems biology and high-throughput experimental technologies pave the way for the systematic reconstruction of metabolic models from genomes of new species, and a corresponding expansion of the scope of their applications. In this review, we provide an introduction to the key ideas of metabolic modeling, survey the methods, and resources that enable model reconstruction and refinement, and chart applications to the investigation of global properties of metabolic systems, the interpretation of experimental results, and the re-engineering of their biochemical capabilities. [source] Penicillin Binding Proteins: key players in bacterial cell cycle and drug resistance processesFEMS MICROBIOLOGY REVIEWS, Issue 5 2006Pauline Macheboeuf Abstract Bacterial cell division and daughter cell formation are complex mechanisms whose details are orchestrated by at least a dozen different proteins. Penicillin-binding proteins (PBPs), membrane-associated macromolecules which play key roles in the cell wall synthesis process, have been exploited for over 70 years as the targets of the highly successful ,-lactam antibiotics. The increasing incidence of ,-lactam resistant microorganisms, coupled to progress made in genomics, genetics and immunofluorescence microscopy techniques, have encouraged the intensive study of PBPs from a variety of bacterial species. In addition, the recent publication of high-resolution structures of PBPs from pathogenic organisms have shed light on the complex intertwining of drug resistance and cell division processes. In this review, we discuss structural, functional and biological features of such enzymes which, albeit having initially been identified several decades ago, are now being aggressively pursued as highly attractive targets for the development of novel antibiotherapies. [source] Enhanced Antibacterial Activity of Nanocrystalline ZnO Due to Increased ROS-Mediated Cell InjuryADVANCED FUNCTIONAL MATERIALS, Issue 6 2009Guy Applerot Abstract An innovative study aimed at understanding the influence of the particle size of ZnO (from the microscale down to the nanoscale) on its antibacterial effect is reported herein. The antibacterial activity of ZnO has been found to be due to a reaction of the ZnO surface with water. Electron-spin resonance measurements reveal that aqueous suspensions of small nanoparticles of ZnO produce increased levels of reactive oxygen species, namely hydroxyl radicals. Interestingly, a remarkable enhancement of the oxidative stress, beyond the level yielded by the ZnO itself, is detected following the antibacterial treatment. Likewise, an exposure of bacteria to the small ZnO nanoparticles results in an increased cellular internalization of the nanoparticles and bacterial cell damage. An examination of the antibacterial effect is performed on two bacterial species: Escherichia coli (Gram negative) and Staphylococcus aureus (Gram positive). The nanocrystalline particles of ZnO are synthesized using ultrasonic irradiation, and the particle sizes are controlled using different solvents during the sonication process. Taken as a whole, it is apparent that the unique properties (i.e., small size and corresponding large specific surface area) of small nanometer-scale ZnO particles impose several effects that govern its antibacterial action. These effects are size dependent and do not exist in the range of microscale particles. [source] |