Bacterial Parasite (bacterial + parasite)

Distribution by Scientific Domains


Selected Abstracts


Widespread occurrence of an intranuclear bacterial parasite in vent and seep bathymodiolin mussels

ENVIRONMENTAL MICROBIOLOGY, Issue 5 2009
Frank U. Zielinski
Summary Many parasitic bacteria live in the cytoplasm of multicellular animals, but only a few are known to regularly invade their nuclei. In this study, we describe the novel bacterial parasite "Candidatus Endonucleobacter bathymodioli" that invades the nuclei of deep-sea bathymodiolin mussels from hydrothermal vents and cold seeps. Bathymodiolin mussels are well known for their symbiotic associations with sulfur- and methane-oxidizing bacteria. In contrast, the parasitic bacteria of vent and seep animals have received little attention despite their potential importance for deep-sea ecosystems. We first discovered the intranuclear parasite "Ca. E. bathymodioli" in Bathymodiolus puteoserpentis from the Logatchev hydrothermal vent field on the Mid-Atlantic Ridge. Using primers and probes specific to "Ca. E. bathymodioli" we found this intranuclear parasite in at least six other bathymodiolin species from vents and seeps around the world. Fluorescence in situ hybridization and transmission electron microscopy analyses of the developmental cycle of "Ca. E. bathymodioli" showed that the infection of a nucleus begins with a single rod-shaped bacterium which grows to an unseptated filament of up to 20 ,m length and then divides repeatedly until the nucleus is filled with up to 80 000 bacteria. The greatly swollen nucleus destroys its host cell and the bacteria are released after the nuclear membrane bursts. Intriguingly, the only nuclei that were never infected by "Ca. E. bathymodioli" were those of the gill bacteriocytes. These cells contain the symbiotic sulfur- and methane-oxidizing bacteria, suggesting that the mussel symbionts can protect their host nuclei against the parasite. Phylogenetic analyses showed that the "Ca. E. bathymodioli" belongs to a monophyletic clade of Gammaproteobacteria associated with marine metazoans as diverse as sponges, corals, bivalves, gastropods, echinoderms, ascidians and fish. We hypothesize that many of the sequences from this clade originated from intranuclear bacteria, and that these are widespread in marine invertebrates. [source]


Immunological quantification of the nematode parasitic bacterium Pasteuria penetrans in soil

FEMS MICROBIOLOGY ECOLOGY, Issue 3 2001
S Fould
Abstract Currently, the abundance of Pasteuria penetrans in soils, an unculturable bacterial parasite of root-knot nematodes (Meloidogyne spp.), is estimated by the percentage of nematode juveniles infected with bacteria and the number of spores attached to their cuticle. Indirect immunofluorescence led to detection of free spores directly in soil suspensions using UV light and polyclonal antibodies raised against two P. penetrans populations (ORS-21414-Sen and PP1). Three extraction methods were compared in order to improve spore recovery. A gentle shaking/sieving method recovered more than 90% of the spores inoculated in soils and was more efficient and simple than aqueous two-phase partitioning and polyethylene glycol extractions. All the spores inoculated in sandy or sandy,clay soils were detected with immunofluorescence microscopy. The quantification of the spores was improved using an ELISA technique that showed a good correlation between optical density and spore concentration in inoculated soils. Specific antibodies provide a suitable method to quantify P. penetrans and may be used to follow the evolution of the real pool of bacteria either in native suppressive soils or in inoculated ones. [source]


Novel domains of the prokaryotic two-component signal transduction systems

FEMS MICROBIOLOGY LETTERS, Issue 1 2001
Michael Y. Galperin
Abstract The archetypal two-component signal transduction systems include a sensor histidine kinase and a response regulator, which consists of a receiver CheY-like domain and a DNA-binding domain. Sequence analysis of the sensor kinases and response regulators encoded in complete bacterial and archaeal genomes revealed complex domain architectures for many of them and allowed the identification of several novel conserved domains, such as PAS, GAF, HAMP, GGDEF, EAL, and HD-GYP. All of these domains are widely represented in bacteria, including 19 copies of the GGDEF domain and 17 copies of the EAL domain encoded in the Escherichia coli genome. In contrast, these novel signaling domains are much less abundant in bacterial parasites and in archaea, with none at all found in some archaeal species. This skewed phyletic distribution suggests that the newly discovered complexity of signal transduction systems emerged early in the evolution of bacteria, with subsequent massive loss in parasites and some horizontal dissemination among archaea. Only a few proteins containing these domains have been studied experimentally, and their exact biochemical functions remain obscure; they may include transformations of novel signal molecules, such as the recently identified cyclic diguanylate. Recent experimental data provide the first direct evidence of the participation of these domains in signal transduction pathways, including regulation of virulence genes and extracellular enzyme production in the human pathogens Bordetella pertussis and Borrelia burgdorferi and the plant pathogen Xanthomonas campestris. Gene-neighborhood analysis of these new domains suggests their participation in a variety of processes, from mercury and phage resistance to maintenance of virulence plasmids. It appears that the real picture of the complexity of phosphorelay signal transduction in prokaryotes is only beginning to unfold. [source]


Association with host mitochondrial haplotypes suggests that feminizing microsporidia lack horizontal transmission

JOURNAL OF EVOLUTIONARY BIOLOGY, Issue 6 2003
J. E. Ironside
Abstract The amphipod crustacean Gammarus duebeni hosts two feminizing microsporidian parasites, Nosema granulosis and Microsporidium sp. Samples of G. duebeni were collected from three sites on the Scottish island of Great Cumbrae and screened for microsporidia using polymerase chain reaction. Associations between the prevalence of the two feminizing parasites and haplotypes of the host mitochondrial gene cytochrome oxidase I (COI) were investigated. The prevalence of both parasites varied significantly among the host's COI haplotypes, suggesting that horizontal transmission is rare or absent in the life cycles of the feminizing microsporidia and that all transmission must therefore be vertical. Life cycles in which all transmission is vertical are common among bacterial parasites but have never before been demonstrated in Eukaryotic parasites. [source]