Home About us Contact | |||
Sound Source (sound + source)
Selected AbstractsGeneration of tree movement sound effectsCOMPUTER ANIMATION AND VIRTUAL WORLDS (PREV: JNL OF VISUALISATION & COMPUTER ANIMATION), Issue 5 2005Katsutsugu Matsuyama Abstract This paper presents a method for automatically generating sound effects for an animation of branches and leaves moving in the wind. Each tree is divided into branches and leaves, and an independent sound effect generation process is employed for each element. The individual results are then compounded into one sound effect. For the branches, we employ an approach based on the frequencies of experimentally obtained Karman vortex streets. For the leaves, we use the leaf blade state as the input and assume a virtual musical instrument that uses wave tables as the sound source. All computations can be performed independently for each frame step. Therefore, each frame step can be executed on completion of the animation step. The results of the implementation of the approach are presented and it is shown that the process offers the possibility of real-time operation through the use of parallel computing techniques. Copyright © 2005 John Wiley & Sons, Ltd. [source] Priority-Driven Acoustic Modeling for Virtual EnvironmentsCOMPUTER GRAPHICS FORUM, Issue 3 2000Patrick Min Geometric acoustic modeling systems spatialize sounds according to reverberation paths from a sound source to a receiver to give an auditory impression of a virtual 3D environment. These systems are useful for concert hall design, teleconferencing, training and simulation, and interactive virtual environments. In many cases, such as in an interactive walkthrough program, the reverberation paths must be updated within strict timing constraints - e.g., as the sound receiver moves under interactive control by a user. In this paper, we describe a geometric acoustic modeling algorithm that uses a priority queue to trace polyhedral beams representing reverberation paths in best-first order up to some termination criteria (e.g., expired time-slice). The advantage of this algorithm is that it is more likely to find the highest priority reverberation paths within a fixed time-slice, avoiding many geometric computations for lower-priority beams. Yet, there is overhead in computing priorities and managing the priority queue. The focus of this paper is to study the trade-offs of the priority-driven beam tracing algorithm with different priority functions. During experiments computing reverberation paths between a source and a receiver in a 3D building environment, we find that priority functions incorporating more accurate estimates of source-to-receiver path length are more likely to find early reverberation paths useful for spatialization, especially in situations where the source and receiver cannot reach each other through trivial reverberation paths. However, when receivers are added to the environment such that it becomes more densely and evenly populated, this advantage diminishes. [source] Individual Acoustic Variation in Fallow Deer (Dama dama) Common and Harsh Groans: A Source-Filter Theory PerspectiveETHOLOGY, Issue 3 2007Elisabetta Vannoni Mammals are able to distinguish conspecifics based on vocal cues, and the acoustic structure of mammal vocalizations is directly affected by the anatomy and action of the vocal apparatus. However, most studies investigating individual patterns in acoustic signals do not consider a vocal production-based perspective. In this study, we used the source-filter model of vocal production as a basis for investigating the acoustic variability of fallow deer groans. Using this approach, we quantified the potential of each acoustic component to carry information about individual identity. We also investigated if cues to individual identity carry over among the two groan types we describe: common and harsh groans. Using discriminant function analysis, we found that variables related to the fundamental frequency contour and the minimum frequencies of the highest formants contributed most to the identification of a given common groan. Common groans were individually distinctive with 36.6% (53.6% with stepwise procedure) of groans assigned to the correct individual. This level of discrimination is approximately six times higher than that predicted by chance. In addition, univariate anovas showed significant inter-individual variation in the minimum formant frequencies when common and harsh groans were combined, suggesting that some information about individuality is shared between groan types. Our results suggest that the sound source and the vocal tract resonances act together to determine groan individuality and that enough variation exists to potentially allow individual recognition based on groans. [source] Pericranial muscular, respiratory, and heart rate components of the orienting responsePSYCHOPHYSIOLOGY, Issue 6 2002J.J. Stekelenburg We have earlier found that voluntary attention to weak auditory stimuli induces inhibition of respiration, heart rate, and electromyographic (EMG) activity of masticatory and lower facial muscles and that these responses lower the auditory threshold for low-frequency sounds. In the current study, we examined whether this inhibitory response pattern also occurs during involuntary orienting to novel, nonsignal sounds. Environmental sounds of low intensity were presented unexpectedly during the performance of a reading task. Orienting responses (ORs) were elicited as indicated by heart rate deceleration and skin conductance responses. Inhibitory respiratory and pericranial EMG responses appeared to be intrinsic components of the OR. Together with the autonomic responses, they habituated when a nonsignal auditory stimulus was repeatedly presented. Our results also suggest that eye and pinna movements occurred toward the sound source. The results of the current study are consistent with the hypothesis of Sokolov (1963) that the primary function of the OR is enhancement of sensory sensitivity. [source] Neural representations of auditory input accommodate to the context in a dynamically changing acoustic environmentEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 1 2009Torsten Rahne Abstract The auditory scene is dynamic, changing from 1 min to the next as sound sources enter and leave our space. How does the brain resolve the problem of maintaining neural representations of the distinct yet changing sound sources? We used an auditory streaming paradigm to test the dynamics of multiple sound source representation, when switching between integrated and segregated sound streams. The mismatch negativity (MMN) component of event-related potentials was used as index of change detection to observe stimulus-driven modulation of the ongoing sound organization. Probe tones were presented randomly within ambiguously organized sound sequences to reveal whether the neurophysiological representation of the sounds was integrated (no MMN) or segregated (MMN). The pattern of results demonstrated context-dependent responses to a single tone that was modulated in dynamic fashion as the auditory environment rapidly changed from integrated to segregated sounds. This suggests a rapid form of auditory plasticity in which the longer-term sound context influences the current state of neural activity when it is ambiguous. These results demonstrate stimulus-driven modulation of neural activity that accommodates to the dynamically changing acoustic environment. [source] Schallfeldsimulation mit Spiegelquellen , Eine Planungshilfe für reflexionsarme RäumeBAUPHYSIK, Issue 4 2009Xueqin Zha Prof. Schall; Berechnungsverfahren; sound protection and acoustics; calculation methods Abstract Konventionelle Auslegungen von akustischen Freifeldräumen nach ISO 3745 sind häufig mit Risiken behaftet, weil die übliche Annahme eines Absorptionsgrades bei senkrechtem Schalleinfall von 99 % herkömmlicher faseriger oder poröser Auskleidungen von Fall zu Fall weder notwendig noch ausreichend sein kann. Es wird ein Simulationsprogramm vorgestellt, das mit der phasenrichtigen Überlagerung der Schallwellen einer realen Punkt- und einer Serie von Spiegelquellen arbeitet, welche die unvollständig absorbierenden Begrenzungsflächen des Raumes ersetzen. Damit werden verschiedene Einflüsse aufgezeigt, die die Freifeldeigenschaften ebenso stark beeinflussen können wie der Absorptionsgrad der Auskleidung. So lässt sich bereits in einem frühen Planungsstadium mehr Sicherheit über die Qualität eines Akustik-Prüfstandes zur Bestimmung von Schallleistung, Spektrum und Richtcharakteristik technischer Schallquellen gewinnen. Sound field simulation by image sources , A design tool for anechoic rooms. Conventional designs of anechoic rooms according to ISO 3745 often bear risks since the usual assumption of an absorption coefficient at normal incidence of 99 % of traditional fibrous or porous claddings may be not necessary in one case but insufficient in another. A simulation program is presented which is based on the wave interferences of the sound from a real point source and a number of image sources which replace imperfectly absorbing bounding surfaces. Its application demonstrates various effects which can influence the free-field characteristics to the same extent as the absorption of the cladding. By this one may gain more confidence , at an early stage of the planning process , in the quality of an acoustic test facility for the determination of sound power, spectrum and directivity of technical sound sources. [source] |