Sound Production (sound + production)

Distribution by Scientific Domains
Distribution within Life Sciences


Selected Abstracts


Sound production in two carapids (Carapus acus and C. mourlani) and through the sea cucumber tegument

ACTA ZOOLOGICA, Issue 2 2006
Eric Parmentier
Abstract Parmentier, E., Fine, M., Vandewalle, P., Ducamp, J.-J. and Lagardère, J.-P. 2006. Sound production in two carapids (Carapus acus and C. mourlani) and throught the sea cucumber teguments. ,Acta Zoologica (Stockholm) 87: 113,119 Carapus acus and Carapus mourlani are able to live inside sea cucumbers and sea stars respectively. Unlike other carapids whose sounds have been recorded (C. boraborensis, C. homei and Encheliophis gracilis), these two species have a central constriction in their swimbladder and are unlikely to encounter heterospecific carapids within their hosts. We evoked sound production in Carapus acus and Carapus mourlani by adding several individuals to a tank with a single host and found that their sounds differ substantially from the sounds emitted by other carapids in pulse length, peak frequency and sharpness of tuning (Q3 dB). Unlike the other carapids, C. mourlani and C. acus produce shorter and less repetitive sounds and do not produce sounds when they enter their host. Since sounds produced within a sea cucumber have the potential to be heard by distant carapids and are typically recorded outside the sea cucumber, we examined the effect of the sea cucumber tegument on acoustic transmission. Attenuation by the tegument was negligible at the frequencies within carapid sounds. Therefore, carapids have the potential to call from the relative safety of a sea cucumber without sacrificing the distance over which their transmissions are heard. [source]


Sound production in four damselfish (Dascyllus) species: phyletic relationships?

BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 4 2009
ERIC PARMENTIER
Most studies of fish sounds show that the sounds are species-specific, with unique spectral and timing characteristics. This raises the question as to whether these sounds can be used to understand phyletic relationships between species and which acoustic parameters are subject to variation between species. In the present study, 597 sounds (and 2540 pulses) related to signal jumps of four Dascyllus species (Dascyllus aruanus, Dascyllus trimaculatus, Dascyllus albisella, and Dascyllus flavicaudus) from different geographic regions (Madagascar, Moorea, Rangiroa, and Hawaii) were analysed. It was possible to discern species-specific sounds, but also variation in sounds between populations. Large variations in sound length were found between Dascyllus species, whereas differences in interpulse duration were found to be variable between populations. In the regions where species live in sympatry, it appears that they restrict the variability in their sounds. This could comprise evidence of adaptation with character displacement of sonic characteristics where different species co-occur. However, sonic characteristics still overlapped substantially between species, suggesting that females would need to sample more than one sound and potentially use other cues to discriminate between species. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 97, 928,940. [source]


Sound production in two carapids (Carapus acus and C. mourlani) and through the sea cucumber tegument

ACTA ZOOLOGICA, Issue 2 2006
Eric Parmentier
Abstract Parmentier, E., Fine, M., Vandewalle, P., Ducamp, J.-J. and Lagardère, J.-P. 2006. Sound production in two carapids (Carapus acus and C. mourlani) and throught the sea cucumber teguments. ,Acta Zoologica (Stockholm) 87: 113,119 Carapus acus and Carapus mourlani are able to live inside sea cucumbers and sea stars respectively. Unlike other carapids whose sounds have been recorded (C. boraborensis, C. homei and Encheliophis gracilis), these two species have a central constriction in their swimbladder and are unlikely to encounter heterospecific carapids within their hosts. We evoked sound production in Carapus acus and Carapus mourlani by adding several individuals to a tank with a single host and found that their sounds differ substantially from the sounds emitted by other carapids in pulse length, peak frequency and sharpness of tuning (Q3 dB). Unlike the other carapids, C. mourlani and C. acus produce shorter and less repetitive sounds and do not produce sounds when they enter their host. Since sounds produced within a sea cucumber have the potential to be heard by distant carapids and are typically recorded outside the sea cucumber, we examined the effect of the sea cucumber tegument on acoustic transmission. Attenuation by the tegument was negligible at the frequencies within carapid sounds. Therefore, carapids have the potential to call from the relative safety of a sea cucumber without sacrificing the distance over which their transmissions are heard. [source]


Ontogeny of Acoustic and Feeding Behaviour in the Grey Gurnard, Eutrigla gurnardus

ETHOLOGY, Issue 3 2005
M. Clara P. Amorim
Although sound production in teleost fish is often associated with territorial behaviour, little is known of fish acoustic behaviour in other agonistic contexts such as competitive feeding and how it changes during ontogeny. The grey gurnard, Eutrigla gurnardus, frequently emits knock and grunt sounds during competitive feeding and seems to adopt both contest and scramble tactics under defensible resource conditions. Here we examine, for the first time, the effect of fish size on sound production and agonistic behaviour during competitive feeding. We have made sound (alone) and video (synchronized image and sound) recordings of grey gurnards during competitive feeding interactions. Experimental fish ranged from small juveniles to large adults and were grouped in four size classes: 10,15, 15,20, 25,30 and 30,40 cm in total length. We show that, in this species, both sound production and feeding behaviour change with fish size. Sound production rate decreased in larger fish. Sound duration, pulse duration and the number of pulses increased whereas the peak frequency decreased with fish size, in both sound types (knocks and grunts). Interaction rate and the frequency of agonistic behaviour decreased with increasing fish size during competitive feeding sessions. The proportion of feeding interactions accompanied by sound production was similar in all size classes. However, the proportion of interactions accompanied by knocks (less aggressive sounds) and by grunts (more aggressive) increased and decreased with fish size, respectively. Taken together, these results suggest that smaller grey gurnards compete for food by contest tactics whereas larger specimens predominantly scramble for food, probably because body size gives an advantage in locating, capturing and handling prey. We further suggest that sounds emitted during feeding may potentially give information on the motivation and ability of the individual to compete for food resources. [source]


Raised thermoregulatory costs at exposed song posts increase the energetic cost of singing for willow warblers Phylloscopus trochilus

JOURNAL OF AVIAN BIOLOGY, Issue 4 2005
Sally Ward
Sexually selected displays, such as bird song, are expected to be costly. We examined a novel potential cost to bird song: whether a less favourable microclimate at exposed song posts would be predicted to raise metabolic rate. We measured the microclimate and height at which willow warblers Phylloscopus trochilus sang and foraged. Song posts were higher than foraging sites. The wind speed was 0.6±0.3 ms,1 greater at song posts (mean±SD, N=12 birds). Song rate and song post selection were not influenced consistently by temperature or wind speed, but the birds sang from lower positions on one particularly windy day. This may have resulted from difficulty in holding on to exposed branches in windy conditions rather than a thermoregulatory constraint. The results suggest that the extra thermoregulatory costs at song posts would increase metabolic rate by an average of 10±4% and a maximum of 25±8% (N=12 birds) relative to birds singing at foraging sites. We estimated that metabolic rate would be 3,8% greater during singing than during quiet respiration because of heat and evaporative water loss in exhaled gases. The combined energy requirements for sound production, thermoregulation at exposed song posts and additional heat loss in exhaled air could increase the metabolic rate of willow warblers by an average of 14,23%, and a maximum of 42,63%, during singing. The energetic cost of singing may thus be much greater for birds in a cold, windy environment than for birds singing in laboratory conditions. [source]


Scale effects and constraints for sound production in katydids (Orthoptera: Tettigoniidae): correlated evolution between morphology and signal parameters

JOURNAL OF EVOLUTIONARY BIOLOGY, Issue 2 2009
F. MONTEALEGRE-Z
Abstract Male katydids (Orthoptera: Tettigoniidae) produce mating calls by rubbing the wings together, using specialized structures in their forewings (stridulatory file, scraper and mirror). A large proportion of species (ca. 66%) reported in the literature produces ultrasonic signals as principal output. Relationships among body size, generator structures and the acoustic parameters carrier frequency (fc) and pulse duration (pd), were studied in 58 tropical species that use pure-tone signals. A comparative analysis, based on the only available katydid phylogeny, shows how changes in sound generator form are related to changes in fc and pd. Anatomical changes of the sound generator that might have been selected via fc and pd are mirror size, file length and number of file teeth. Selection for structures of the stridulatory apparatus that enhance wing mechanics via file-teeth and scraper morphology was crucial in the evolution of ultrasonic signals in the family Tettigoniidae. [source]


A link between sound producing musculature and mating success in Atlantic cod

JOURNAL OF FISH BIOLOGY, Issue 3 2008
S. Rowe
Individual variability in the mating success of male Atlantic cod Gadus morhua was quantified within an aggregation (n= 59) breeding undisturbed in a large (684 m3) mesocosm tank. Observational and morphometric data were examined to assess the degree to which this mating variation could be explained by aspects of morphology, condition and spawning behaviour. The number of ventral mounts initiated (i.e. mating success) was highly variable; most mounts were initiated by a very small percentage of available males. The significant correlate of male mating success was mass of the sound producing musculature, i.e. drumming muscles. Neither body size, condition, pelvic and median fin morphology nor aggression influenced the number of ventral mounts initiated by a male. The present study suggests a possible link between sound production and mating success in Atlantic cod. [source]


Histological and ultrastructural aspects of the nasal complex in the harbour porpoise, Phocoena phocoena

JOURNAL OF MORPHOLOGY, Issue 11 2009
Susanne Prahl
Abstract During the evolution of odontocetes, the nasal complex was modified into a complicated system of passages and diverticulae. It is generally accepted that these are essential structures for nasal sound production. However, the mechanism of sound generation and the functional significance of the epicranial nasal complex are not fully understood. We have studied the epicranial structures of harbor porpoises (Phocoena phocoena) using light and electron microscopy with special consideration of the nasal diverticulae, the phonic lips and dorsal bursae, the proposed center of nasal sound generation. The lining of the epicranial respiratory tract with associated diverticulae is consistently composed of a stratified squamous epithelium with incomplete keratinization and irregular pigmentation. It consists of a stratum basale and a stratum spinosum that transforms apically into a stratum externum. The epithelium of the phonic lips comprises 70,80 layers of extremely flattened cells, i.e., four times more layers than in the remaining epicranial air spaces. This alignment and the increased number of desmosomes surrounding each cell indicate a conspicuous rigid quality of the epithelium. The area surrounding the phonic lips and adjacent fat bodies exhibits a high density of mechanoreceptors, possibly perceiving pressure differentials and vibrations. Mechanoreceptors with few layers and with perineural capsules directly subepithelial of the phonic lips can be distinguished from larger, multi-layered mechanoreceptors without perineural capsules in the periphery of the dorsal bursae. A blade-like elastin body at the caudal wall of the epicranial respiratory tract may act as antagonist of the musculature that moves the blowhole ligament. Bursal cartilages exist in the developmental stages from fetus through juvenile and could not be verified in adults. These histological results support the hypothesis of nasal sound generation for the harbor porpoise and display specific adaptations of the echolocating system in this species. J. Morphol. 2009. © 2009 Wiley-Liss, Inc. [source]


Functional morphology of the sonic apparatus in the fawn cusk-eel Lepophidium profundorum (Gill, 1863)

JOURNAL OF MORPHOLOGY, Issue 11 2007
Michael L. Fine
Abstract Recent reports of high frequency sound production by cusk-eels cannot be explained adequately by known mechanisms, i.e., a forced response driven by fast sonic muscles on the swimbladder. Time to complete a contraction-relaxation cycle places a ceiling on frequency and is unlikely to explain sounds with dominant frequencies above 1 kHz. We investigated sonic morphology in the fawn cusk-eel Lepophidium profundorum to determine morphology potentially associated with high frequency sound production and quantified development and sexual dimorphism of sonic structures. Unlike other sonic systems in fishes in which muscle relaxation is caused by internal pressure or swimbladder elasticity, this system utilizes antagonistic pairs of muscles: ventral and intermediate muscles pull the winglike process and swimbladder forward and pivot the neural arch (neural rocker) above the first vertebra backward. This action stretches a fenestra in the swimbladder wall and imparts strain energy to epineural ribs, tendons and ligaments connected to the anterior swimbladder. Relatively short antagonistic dorsal and dorsomedial muscles pull on the neural rocker, releasing strain energy, and use a lever advantage to restore the winglike process and swimbladder to their resting position. Sonic components grow isometrically and are typically larger in males although the tiny intermediate muscles are larger in females. Although external morphology is relatively conservative in ophidiids, sonic morphology is extremely variable within the family. J. Morphol., 2007. © 2007 Wiley-Liss, Inc. [source]


Larynx morphology and sound production in three species of Testudinidae

JOURNAL OF MORPHOLOGY, Issue 2 2004
Roberto Sacchi
Abstract Although the ability to vocalize is widespread among tortoises, the mechanisms of sound production in chelonians remain undescribed. In this study, we analyze the morphology and histology of the larynx of three species of Testudinidae (Testudo hermanni, T. graeca, and T. marginata) in order to ascertain the presence of vibrating acoustic structure, and based on our findings we propose a general model for phonation in tortoises. The structure of the larynx of the three tortoises analyzed is simple: three cartilages (the cricoid and two arytenoids) form the skeleton of the larynx, while two pairs of muscles (the dilators and constrictors) control the widening and closing of the glottis. The larynx is supported in the oral cavity by the hyoid cartilage, which in tortoises assumes the same functions of the thyroid cartilage of mammals. Two bands of elastic fibers are inserted in the lateral walls of the larynx just upstream of the glottis, and can be stretched away from the hyoid by the movements of the arytenoids. Their position and structure suggest that these bands are capable of vibrating during exhalation, and therefore may be considered vocal cords. The cricoid of T. marginata and T. graeca hold two diverticula, not previously reported, which might function as a low-frequency resonating chamber, improving the harmonic structure of tortoise calls. The structure of the larynx is compared with that of other vertebrates and the relationships between morphology and phonation are discussed. This is the first detailed description of anatomical structures possibly devoted to vocalization in chelonians. J. Morphol. 261:175,183, 2004. © 2004 Wiley-Liss, Inc. [source]


Sound reasons for silence: why do molluscs not communicate acoustically?

BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 3 2010
GEERAT J. VERMEIJ
Many adaptively beneficial states of form, behaviour and physiology are absent in large parts of the evolutionary tree of life. Although the causes of these absences can never be fully known, insights into the possibilities and limitations of adaptive evolution can be gained by examining the conditions that would be necessary for the forbidden phenotypes to evolve. Here, the case of acoustic communication in molluscs is considered. The production of sound as a warning to predators or as a means to attract mates is widespread among arthropods and vertebrates, both on land and in water, but is unknown among molluscs, even though many derived clades of gastropods and cephalopods are characterized by internal fertilization and by the evolution of long-distance visual and chemical signalling. Many molluscs possess suitable hard parts , shell, operculum and jaws , for producing sound, but most shell-bearing molluscs lack the agility or aggression necessary to cope with high-activity enemies attracted to an acoustic beacon. Their evolutionary background, arising from the generally passive adaptations of molluscs and other animals with low metabolic rates, prevents selection favouring communication by sound, and indeed favours silence. Several clades of shell-bearing gastropods and cephalopods were identified in which sound production has the greatest potential to arise or to be discovered. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100, 485,493. [source]


Acoustic communication in crocodilians: from behaviour to brain

BIOLOGICAL REVIEWS, Issue 3 2009
A. L. Vergne
ABSTRACT Crocodilians and birds are the modern representatives of Phylum Archosauria. Although there have been recent advances in our understanding of the phylogeny and ecology of ancient archosaurs like dinosaurs, it still remains a challenge to obtain reliable information about their behaviour. The comparative study of birds and crocodiles represents one approach to this interesting problem. One of their shared behavioural features is the use of acoustic communication, especially in the context of parental care. Although considerable data are available for birds, information concerning crocodilians is limited. The aim of this review is to summarize current knowledge about acoustic communication in crocodilians, from sound production to hearing processes, and to stimulate research in this field. Juvenile crocodilians utter a variety of communication sounds that can be classified into various functional categories: (1) "hatching calls", solicit the parents at hatching and fine-tune hatching synchrony among siblings; (2) "contact calls", thought to maintain cohesion among juveniles; (3) "distress calls", induce parental protection; and (4) "threat and disturbance calls", which perhaps function in defence. Adult calls can likewise be classified as follows: (1) "bellows", emitted by both sexes and believed to function during courtship and territorial defence; (2) "maternal growls", might maintain cohesion among offspring; and (3) "hisses", may function in defence. However, further experiments are needed to identify the role of each call more accurately as well as systematic studies concerning the acoustic structure of vocalizations. The mechanism of sound production and its control are also poorly understood. No specialized vocal apparatus has been described in detail and the motor neural circuitry remains to be elucidated. The hearing capabilities of crocodilians appear to be adapted to sound detection in both air and water. The ear functional anatomy and the auditory sensitivity of these reptiles are similar in many respects to those of birds. The crocodilian nervous system likewise shares many features with that of birds, especially regarding the neuroanatomy of the auditory pathways. However, the functional anatomy of the telencephalic auditory areas is less well understood in crocodilians compared to birds. [source]


Evolution of advertisement signals in North American hylid frogs: vocalizations as end-products of calling behavior

CLADISTICS, Issue 6 2006
Tony Robillard
We studied the advertisement signals in two clades of North American hylid frogs in order to characterize the relationships between signal acoustic structure and underlying behavior. A mismatch was found between the acoustic structure and the mechanism of sound production. Two separate sets of phylogenetic characters were coded following acoustic versus mechanistic criteria, and exploratory treatments were made to compare their respective phylogenetic content in comparison with the molecular phylogeny (Faivovich et al., 2005). We discuss the consequences of the acoustic/mechanistic mismatch in terms of significance of acoustic characters for phylogenetic and comparative studies; and the evolution of vocalizations in North American treefrogs. Considering only the acoustic structure of frog vocalizations can lead to misleading results in terms of both phylogenetic signal and evolution of vocalizations. In contrast, interpreting the acoustic signals with regard to the mechanism of sound production results in consistent phylogenetic information. The mechanistic coding also provides strong homologies for use in comparative studies of frog vocalizations, and to derive and test evolutionary hypotheses. © The Willi Hennig Society 2005. [source]