Sound Intensity (sound + intensity)

Distribution by Scientific Domains


Selected Abstracts


Effects of unilateral laser-assisted ventriculocordectomy in horses with laryngeal hemiplegia

EQUINE VETERINARY JOURNAL, Issue 6 2006
P. ROBINSON
Summary Reasons for performing study: Recent studies have evaluated surgical techniques aimed at reducing noise and improving airway function in horses with recurrent laryngeal neuropathy (RLN). These techniques require general anaesthesia and are invasive. A minimally invasive transnasal surgical technique for treatment of RLN that may be employed in the standing, sedated horse would be advantageous. Objective: To determine whether unilateral laser-assisted ventriculocordectomy (LVC) improves upper airway function and reduces noise during inhalation in exercising horses with laryngeal hemiplegia (LH). Methods: Six Standardbred horses were used; respiratory sound and inspiratory transupper airway pressure (Pui) measured before and after induction of LH, and 60, 90 and 120 days after LVC. Inspiratory sound level (SL) and the sound intensities of formants 1, 2 and 3 (F1, F2 and F3, respectively), were measured using computer-based sound analysis programmes. In addition, upper airway endoscopy was performed at each time interval, at rest and during treadmill exercise. Results: In LH-affected horses, Pui, SL and the sound intensity of F2 and F3 were increased significantly from baseline values. At 60 days after LVC, Pui and SL had returned to baseline, and F2 and F3 values had improved partially compared to LH values. At 90 and 120 days, however, SL increased again to LH levels. Conclusions: LVC decreases LH-associated airway obstruction by 60 days after surgery, and reduces inspiratory noise but not as effectively as bilateral ventriculocordectomy. Potential relevance: LVC may be recommended as a treatment of LH, where reduction of upper airway obstruction and respiratory noise is desired and the owner wishes to avoid risks associated with a laryngotomy incision or general anaesthesia. [source]


Fluorescence-controlled Er:YAG laser for caries removal in permanent teeth: a randomized clinical trial

EUROPEAN JOURNAL OF ORAL SCIENCES, Issue 2 2008
Henrik Dommisch
The aim of this randomized clinical study was to compare the efficacy of a fluorescence-controlled erbium-loaded yttrium aluminum garnet (Er:YAG) laser with conventional bur treatment for caries therapy in adults. Twenty-six patients with 102 carious lesions were treated using either the Er:YAG laser, at threshold levels of 7, 8, 9, and 10 [U], or rotary burs. Both techniques were applied to each lesion at separate locations. After treatment, dentine samples were obtained using a carbide bur. The viable counts of Streptococcus mutans (SM) and lactobacilli (LB) [expressed as colony-forming units (log10 CFUs)], treatment time, pain, vibration, and sound intensity were determined. The median numbers of CFUs for SM and LB were not statistically different between laser and bur treatment at threshold levels 7 and 8 [U]. At threshold levels 9 and 10 [U], the median number of CFUs for LB [1.11 (range: 0.00,2.04)] were significantly higher following laser treatment than following bur treatment [0.30 (range: 0.00,0.60)]. The results indicate that treatment with a fluorescence-controlled Er:YAG laser at threshold levels of 7 and 8 removed caries to a level similar to that achieved using conventional bur treatment, with clinically irrelevant amounts of remaining bacteria. Although more time consuming, laser treatment provided higher patient comfort than bur treatment. [source]


INFLUENCE OF WATER ACTIVITY ON THE ACOUSTIC PROPERTIES OF BREAKFAST CEREALS

JOURNAL OF TEXTURE STUDIES, Issue 5 2006
EWA GONDEK
ABSTRACT Corn and wheat bran flakes were compressed in a plastic cylinder and the generated vibrations were measured by a piezoelectric accelerometer. Amplitude,time records were thoroughly analyzed and the total acoustic energy in arbitrary units, number of acoustic events and energy of a single acoustic event were calculated. Relationships between the time of compression, frequency and sound intensity are presented as acoustograms. All parameters, except the energy of a single acoustic event, were strongly dependent on water activity (Aw). The flakes differed essentially in their ability to propagate vibrations. At low Aw's, both types of flakes were alike, but at higher Aw's, corn flakes damped high-frequency waves while wheat bran flakes did not show this property. [source]


The , -ray burst phenomenon treated as the collapse of a QED magnetized vacuum bubble: analogy with sonoluminescence

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 4 2000
YU. N. Gnedin
We treat the phenomenon of a , -ray burst as the non-linear collapse of a magnetic cavity surrounding a neutron star with extremely large magnetic field B,1015,1016 G due to the process of bubble shape instability in the resonant MHD field of an accreting plasma or on a neutron star surface. The QED effect of vacuum polarizability by a strong magnetic field is taken into a consideration. We develop an analogy with the phenomenon of sonoluminescence in which the gas bubble is located in a surrounding liquid with a driven sound intensity. [source]


Aerodynamics of the Human Larynx During Vocal Fold Vibration,

THE LARYNGOSCOPE, Issue 12 2005
Randall L. Plant MD
Abstract Objectives: The goal of this study was to comprehensively analyze the influence of aerodynamics on laryngeal function. Three specific aspects were considered: 1) a multidimensional comparison of the interaction of subglottic pressure, sound intensity, and fundamental frequency; 2) examination of instantaneous changes in subglottic pressure during each glottic cycle; and 3) determination of the threshold subglottic pressure for vocal fold vibration and its dependence on other aerodynamic factors. Study Design: Prospective study with six healthy individuals without history of voice disorders. Methods: The subjects vocalized the vowel sound /i/ with a variety of different intensities, pitch, and sound intensity. Subglottic air pressure, fundamental frequency, sound intensity, and the electroglottography signal were simultaneously measured. Results: Linear relationships were seen in all subjects between subglottic air pressure and sound intensity, although there were large variations in the slopes of these relationships. Rapid variations in subglottic pressure during each glottic cycle were detected, corresponding to the opening of the vocal folds with each individual vibration. Threshold pressures for vocal fold vibration were dependent primarily on sound intensity and fundamental frequency and tended to be higher at vibration onset than at offset. Conclusion: The larynx responded in a predictable pattern to general aerodynamic forces, but there was tremendous variability in its specific behavior. Fundamental frequency and sound intensity tended to increase with subglottic air pressure, but that relationship was not seen consistently in all subjects. The relationship between subglottic air pressure and sound intensity was usually linear, unlike the exponential relationship seen in previous studies. Subglottic pressure was noted to undergo rapid change with each glottic cycle in some, but not all, subjects and was most strongly affected by average subglottic pressure. Phonation threshold air pressure was influenced by the sound intensity and, to a smaller extent, by the fundamental frequency of the voiced sound. [source]


Lateralization During the Weber Test: Animal Experiments

THE LARYNGOSCOPE, Issue 3 2002
Jean-Yves Sichel MD
Abstract Objectives/Hypothesis The objective of this study were to present an assessment of a new theory to explain lateralization during the Weber test using an animal model. This theory is based on the discovery that a major pathway in bone conduction stimulation to the inner ear is through the skull contents (probably the cerebrospinal fluid [CSF]). The placement of a bone vibrator or tuning fork on the skull excites the inner ear by the classic osseous pathway and by the suggested CSF pathway. We assume that there is a phase difference between the stimulation mediated by the ossicular chain (inertial and occlusion mechanisms) and the one mediated by the CSF. The presence of a conductive pathology will decrease the magnitude of the sound energy mediated by the ossicular chain. Thus, the out-of-phase signal arriving through the bony pathways will be decreased, hence increasing the resultant sound intensity stimulating the cochlea. Study Design Prospective animal study. Methods The experiment was performed on 10 fat sand rats, which had undergone unilateral cochleostomy and a small craniotomy. The auditory nerve brainstem response (ABR) thresholds were measured to air-conducted stimulation, to stimulation with the bone vibrator applied to the skull, and to stimulation with the bone vibrator applied directly to the brain through the craniotomy. The ossicular chain of the second ear was then fixed to the middle ear walls with cyanoacrylate glue to induce a conductive hearing loss. The ABR thresholds to the same three stimuli were then measured again. Results After ossicular chain fixation, the ABR threshold to air-conducted stimulation increased, to bone vibrator stimulation on the bone decreased (hearing improvement), and to bone vibrator stimulation directly on the brain remained unchanged. Conclusions This experiment confirms the proposed theory. During clinical bone conduction stimulation, there is a phase difference between sound energy reaching the inner ear through the middle ear ossicles and from the CSF. A middle ear conductive pathology removes one of these components, thus increasing the effective sound intensity in the affected ear. On the other hand, when the bone vibrator is applied on the brain, the inner ear is stimulated only through the CSF, so ossicular chain fixation does not change the ABR threshold. Moreover, this study proves that lateralization during the Weber phenomenon is the result, at least in part, of an intensity difference between sound energy reaching the two cochleae. [source]


Technical characterization of an ultrasound source for noninvasive thermoablation by high-intensity focused ultrasound

BJU INTERNATIONAL, Issue 3 2002
K.U. Köhrmann
Objective,To develop a generator for high-intensity focused ultrasound (HIFU, a method of delivering ultrasonic energy with resultant heat and tissue destruction to a tight focus at a selected depth within the body), designed for extracorporeal coupling to allow various parenchymal organs to be treated. Material and methods,The ultrasound generated by a cylindrical piezo-ceramic element is focused at a depth of 10 cm using a parabolic reflector with a diameter of 10 cm. A diagnostic B-mode ultrasonographic transducer is integrated into the source to allow the focus to be located in the target area. The field distribution of the sound pressure was measured in degassed water using a needle hydrophone. An ultrasound-force balance was used to determine the acoustic power. These measurements allowed the spatially averaged sound intensity to be calculated. The morphology and extent of tissue necrosis induced by HIFU was examined on an ex-vivo kidney model. Results,The two-dimensional field distribution resulted in an approximately ellipsoidal focus of 32×4 mm (, 6 dB). The spatially maximum averaged sound intensity was 8591 W/cm2 at an electrical power of 400 W. The lesion caused to the ex-vivo kidney at this maximum generator power with a pulse duration of 2 s was a clearly delineated ellipsoidal coagulation necrosis up to 8.8×2.3 mm (length×width) and with central liquefied necrosis of 7.9×1.9 mm. Conclusion,This newly developed ultrasound generator with a focal length of 10 cm can induce clear necrosis in parenchymal tissue. Because of its specific configuration and the available power range of the ultrasound generator, there is potential for therapeutic noninvasive ablation of tissue deep within a patient's body. [source]