Sonic Velocity (sonic + velocity)

Distribution by Scientific Domains


Selected Abstracts


Crosswell seismic waveguide phenomenology of reservoir sands & shales at offsets >600 m, Liaohe Oil Field, NE China

GEOPHYSICAL JOURNAL INTERNATIONAL, Issue 1 2005
P. C. Leary
SUMMARY Crosswell seismic data recorded at 620,650 m offsets in an oil-bearing sand/shale reservoir formation at the Liaohe Oil Field, northeast China, provide robust evidence for waveguide action by low-velocity reservoir layers. Crosswell-section velocity models derived from survey-well sonic logs and further constrained by observed waveguide seismic wavegroup amplitudes and phases yield plausible evidence for interwell reservoir,sand continuity and discontinuity. A pair of back-to-back Liaohe crosswell vector-seismic surveys were conducted using a source well between two sensor wells at 650 and 620 m offsets along a 200-m-thick reservoir formation dipping 7° down-to-east between depths of 2.5 and 3 km. A downhole orbital vibrator generated seismic correlation wavelets with frequency range 50,350 Hz and signal/noise ratio up to 5:1 over local downhole ambient noise. The sensor wells were instrumented with a mobile 12- to 16-level string of clamped vector-motion sensor modules at 5 m intervals. Using 5 m source depth increments, crosswell Surveys 1 and 2 cover source/sensor well intervals above and through the reservoir of, respectively, 600 m/600 m (13 000 vector traces in 9 common sensor fans) and 300 m/560 m (7000 vector traces in 7 common sensor fans). Survey 1 common sensor gathers show clear, consistent high-amplitude 20 ms waveletgroup lags behind the first-arrival traveltime envelope. Such arrivals are diagnostic of seismic low-velocity waveguides connecting the source and sensor wells. Observed Survey 1 retarded wavegroup depths tally with source and sensor depths in low-velocity layers identified in sonic well logs. Finite-difference acoustic model wavefields computed for waveguide acoustic layers constrained by well-log sonic velocity data match the observed waveguide traveltime and amplitude systematics. Model waveforms duplicate the observed m-scale and ms-scale sensitivity of waveguide spatio-temporal energy localization. Survey 2 crosswell data, in contrast, provide no comparable evidence for waveguide action despite a sensor-well sonic well log similar to that of Survey 1. Instead, acoustic wavefield modelling of Survey 2 data clearly favours an interpreted waveguide model with 10° downdip interrupted by a 75,100 m throw down-fault near the sensor well. The absence of clear waveguide arrivals is adequately explained by dispersal of waveguide energy at the fault discontinuity. Auxiliary well sonic velocity and lithologic logs confirm the model-implied 75,100 m of down-throw faulting near the sensor well. [source]


INVESTIGATION OF ELASTIC INVERSION ATTRIBUTES USING THE EXPANSIBLE CLAY MODEL FOR WATER SATURATION

JOURNAL OF PETROLEUM GEOLOGY, Issue 2 2009
J. O. Ugbo
Quantitative X-ray diffraction has been used to characterize water saturation levels in complex shaly sand reservoirs (i.e. shaly sands with infrequent carbonates and minor proportions of iron-rich minerals such as pyrite and siderite). The results led to the design of a total expansible clay model for water saturation, which is similar in form to the Dual Water model except that the excess effect of the clay minerals has been accounted for by a volume-conductivity relationship, rather than one of the usual volume-porosity translations, effectively reducing the uncertainties in estimating water saturation. Given the ambiguities associated with predicting these petrophysical properties from data on rock properties, such as mineralogy, an investigation of the relationship of estimated water saturation based on the total expansible clay model to independently determined rock properties was undertaken using well log inversion and forward modelling techniques. The results show that there is consistency in the relationship between water saturation estimates made from the total expansible clay model and known elastic parameters such as primary and shear-wave sonic velocity (Vp, Vs), bulk density (,b) and impedance (I), when the Raymer-Gardner-Hunt model is used. Use of the Raymer-Gardner-Hunt model to reconstruct the required rock-physics relationship avoids the classic limitation of the more advanced Gassman model, which assumes that the dry shear modulus is equivalent to the wet shear modulus (,dry=,wet). The present work raises further questions on the application of the Voigt-Reuss-Hill (VRH) limits, or the Hashin Shtrikman bounds for averaging the effective shear modulus of the dry matrix in complex shaly sand reservoirs, where a two-mineral matrix is normally assumed. The study shows the inapplicability of the VRH or Hashin-Shtrikman averaging techniques but provides a minor adjustment to the averaging that solves the problems faced in reconstructing the relationships between directly measured elastic properties and derived petrophysical properties for this type of reservoir rock. [source]


Impactites as a random medium,Using variations in physical properties to assess heterogeneity within the Bosumtwi meteorite impact crater

METEORITICS & PLANETARY SCIENCE, Issue 4-5 2007
Elizabeth L'HEUREUX
The damage induced by impact results in extensive fracturing and mixing of target materials. We discuss here a means of using sonic velocity and density logs from two boreholes through the Bosumtwi crater fill and basement to estimate the degree of heterogeneity and fracturing within the impacted target, in order to understand the discrepancy between the large impedances derived from the log data and the nonreflective zone of impactites observed in seismic sections. Based on an analysis of the stochastic fluctuations in the log data, the Bosumtwi impactites are characterized by vertical scale lengths of 2,3 m. From the resolution of the seismic data over the crater, horizontal scale lengths are estimated at <12 m. The impactites therefore fall within the quasi-homogeneous scattering regime, i.e., seismic energy will propagate through the medium with little disruption. Scale lengths as small as these are observed in the fractured basement rocks of impact structures, whereas non-impact related crystalline environments are characterized by scale lengths an order of magnitude larger. Assuming that the high-frequency fluctuations observed in the log data are more sensitive to fracture distribution than petrology, this suggests that the small scale lengths observed within impact structures are characteristic of impact-induced damage, and could be used to estimate the extent of fracturing undergone by the rocks at any depth below an impact structure. [source]


A novel nanoflow interface for atmospheric pressure ionization mass spectrometry

RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 5 2003
Atsumu HirabayashiArticle first published online: 23 JAN 200
A novel spray-ionization technique for nanoflow liquid chromatography/mass spectrometry (nLC/MS) has been developed by modifying the sonic spray ionization (SSI) technique. A solution from a tapered fused-silica capillary is sprayed by a gas flow coaxial to the capillary, and ions produced are analyzed with an ion-trap mass spectrometer. The ion intensity is shown to have a steep threshold at a low gas velocity and to be much less dependent on the gas velocity than that of conventional SSI, in which the ion intensity is strongly dependent on the gas velocity and reaches its maximum at sonic velocity. Thus, we conclude that the concentration of charge in the solution at the tapered capillary tip with an inner diameter of 15,,m is almost at saturation so that charged droplets are produced from the solution by electrical force, rather than by sheer stress due to the gas flow. The ions are readily produced from these charged droplets. Preliminary results are compared with results obtained with a miniaturized electrospray unit. Copyright © 2003 John Wiley & Sons, Ltd. [source]


Gas Hydrates in the Qilian Mountain Permafrost, Qinghai, Northwest China

ACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 1 2010
Youhai ZHU
Abstract: Qilian Mountain permafrost, with area about 10×104 km2, locates in the north of Qinghai-Tibet plateau. It equips with perfect conditions and has great prospecting potential for gas hydrate. The Scientific Drilling Project of Gas Hydrate in Qilian Mountain permafrost, which locates in Juhugeng of Muri Coalfield, Tianjun County, Qinghai Province, has been implemented by China Geological Survey in 2008,2009. Four scientific drilling wells have been completed with a total footage of 2059.13 m. Samples of gas hydrate are collected separately from holes DK-1, DK-2 and DK-3. Gas hydrate is hosted under permafrost zone in the 133,396 m interval. The sample is white crystal and easily burning. Anomaly low temperature has been identified by the infrared camera. The gas hydrate-bearing cores strongly bubble in the water. Gas-bubble and water-drop are emitted from the hydrate-bearing cores and then characteristic of honeycombed structure is left The typical spectrum curve of gas hydrate is detected using Raman spectrometry. Furthermore, the logging profile also indicates high electrical resistivity and sonic velocity. Gas hydrate in Qilian Mountain is characterized by a thinner permafrost zone, shallower buried depth, more complex gas component and coal-bed methane origin etc. [source]