Home About us Contact | |||
Solvothermal Method (solvothermal + method)
Selected AbstractsSynthesis and Structure Characterization of Copper Terephthalate Metal,Organic FrameworksEUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 16 2009Cantwell G. Carson Abstract In this paper, we report on a high-throughput (gram quantities) solvothermal method for the synthesis of copper terephthalate metal,organic frameworks in dmf. While the structure of MOF-2 and some of the associated polymorphs are well known, we know of no equivalent structural studies for the isostructural copper terephthalate (Cu,tpa). The material we have made crystallizes in the C2/m space group. Cu,tpa also exhibits reversible solvent-exchange properties. These properties make this material useful for potential applications in gas storage and catalysis applications. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2009) [source] Morphology-Selective Formation and Morphology-Dependent Gas-Adsorption Properties of Coordination Polymer ParticlesADVANCED MATERIALS, Issue 6 2009Hee Jung Lee Three coordination polymer particles (CPPs) are selectively synthesized using the solvothermal method. All three CPPs are prepared from the same building blocks. However, they form different morphologies, such as elongated hexagons, ellipsoids, and rods. Gas-adsorption measurements on N2, CO2, and H2 reveal that diversely shaped CPPs have different gas-adsorption properties, even though they have the same chemical compositions. [source] Surface Enthalpy, Enthalpy of Water Adsorption, and Phase Stability in Nanocrystalline Monoclinic ZirconiaJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 1 2009A. V. Radha A fundamental issue that remains to be solved when approaching the nanoscale is how the size induces transformation among different polymorphic structures. Understanding the size-induced transformation among the different polymorphic structures is essential for widespread use of nanostructured materials in technological applications. Herein, we report water adsorption and high-temperature solution calorimetry experiments on a set of samples of single-phase monoclinic zirconia with different surface areas. Essential to the success of the study has been the use of a new ternary water-in-oil/water liquid solvothermal method that allows the preparation of monoclinic zirconia nanoparticles with a broad range of (BET) Brunauer,Emmett,Teller surface area values. Thus, the surface enthalpy for anhydrous monoclinic zirconia is reported for the first time, while that for the hydrous surface is a significant improvement over the previously reported value. Combining these data with previously published surface enthalpy for nanocrystalline tetragonal zirconia, we have calculated the stability crossovers between monoclinic and tetragonal phases to take place at a particle size of 28 ± 6 nm for hydrous zirconia and 34 ± 5 nm for anhydrous zirconia. Below these particle sizes, tetragonal hydrous and anhydrous phases of zirconia become thermodynamically stable. These results are within the margin of the theoretical estimation and confirm the importance of the presence of water vapor on the transformation of nanostructured materials. [source] New Metal-Organic Frameworks with Large Cavities: Selective Sorption and Desorption of Solvent MoleculesCHEMISTRY - A EUROPEAN JOURNAL, Issue 26 2007Yan Wang Abstract Five novel transition metal complexes [CdII3(tpba-2)2(SCN)6],6,THF,3,H2O (1), [CuII3(tpba-2)2(SCN)6],6,THF,3,H2O (2), [NiII3(tpba-2)2(SCN)6],6,THF,3,H2O (3), [CdII2(tpba-2)(SCN)3]ClO4 (4), [CuI3(SCN)6(H3tpba-2)] (5) [TPBA-2 = N,,N,,,N,,, -tris(pyrid-2-ylmethyl)-1,3,5-benzenetricarboxamide, THF=tetrahydrofuran] were obtained by reactions of the corresponding transition metal salts with TPBA-2 ligand in the presence of NH4SCN using layering or solvothermal method, respectively. The results of X-ray crystallographic analysis showed that complexes 1, 2 and 3 are isostructural and have the same 2D honeycomb network structure with Kagomé lattice, in which all the MII (M = Cd, Cu, Ni) atoms are six-coordinated, and the TPBA-2 ligands adopt cis,cis,cis conformation while the thiocyanate anions act as terminal ligands. Capsule-like motifs are found in 1, 2 and 3, in which six THF molecules are hosted, and the results of XPRD and solid-state 13C,NMR spectral measurements showed that the compound 1 can selectively desorb and adsorb THF molecules occurring along with the re-establishment of its crystallinity. In contrast to 1, 2 and 3, complex 4 has different 2D network structure, resulting from TPBA-2 ligands with cis,trans,trans conformation, thiocyanate anions serving as end-to-end bridging ligands, and the incomplete replacement of perchlorate anions, which further link the 2D layers into 3D framework by the hydrogen bonds. In complex 5, the CuII atoms are reduced to CuI during the process of solvothermal reaction, and the CuI atoms are connected by thiocyanate anions to form a 3D porous framework, in which the protonated TPBA-2 ligands are hosted in the cavities as templates. [source] |