Solvent-accessible Surface Area (solvent-accessible + surface_area)

Distribution by Scientific Domains


Selected Abstracts


Incorporating structural characteristics for identification of protein methylation sites

JOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 9 2009
Dray-Ming Shien
Abstract Studies over the last few years have identified protein methylation on histones and other proteins that are involved in the regulation of gene transcription. Several works have developed approaches to identify computationally the potential methylation sites on lysine and arginine. Studies of protein tertiary structure have demonstrated that the sites of protein methylation are preferentially in regions that are easily accessible. However, previous studies have not taken into account the solvent-accessible surface area (ASA) that surrounds the methylation sites. This work presents a method named MASA that combines the support vector machine with the sequence and structural characteristics of proteins to identify methylation sites on lysine, arginine, glutamate, and asparagine. Since most experimental methylation sites are not associated with corresponding protein tertiary structures in the Protein Data Bank, the effective solvent-accessible prediction tools have been adopted to determine the potential ASA values of amino acids in proteins. Evaluation of predictive performance by cross-validation indicates that the ASA values around the methylation sites can improve the accuracy of prediction. Additionally, an independent test reveals that the prediction accuracies for methylated lysine and arginine are 80.8 and 85.0%, respectively. Finally, the proposed method is implemented as an effective system for identifying protein methylation sites. The developed web server is freely available at http://MASA.mbc.nctu.edu.tw/. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2009 [source]


A new analytical method for computing solvent-accessible surface area of macromolecules and its gradients

JOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 4 2005
Shura Hayryan
Abstract In the calculation of thermodynamic properties and three-dimensional structures of macromolecules, such as proteins, it is important to have an efficient algorithm for computing the solvent-accessible surface area of macromolecules. Here, we propose a new analytical method for this purpose. In the proposed algorithm we consider the transformation that maps the spherical circles formed by intersection of the atomic surfaces in three-dimensional space onto the circles on a two-dimensional plane, and the problem of computing the solvent-accessible surface area is reduced to the problem of computing the corresponding curve integrals on the plane. This allows to consider only the integrals along the circular trajectories on the plane. The algorithm is suitable for parallelization. Testings on many proteins as well as the comparison to the other analogous algorithms have shown that our method is accurate and efficient. © 2005 Wiley Periodicals, Inc. J Comput Chem 26: 334,343, 2005 [source]


Large-scale molecular dynamics simulations of HLA-A*0201 complexed with a tumor-specific antigenic peptide: Can the ,3 and ,2m domains be neglected?

JOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 15 2004
Shunzhou Wan
Abstract Large-scale massively parallel molecular dynamics (MD) simulations of the human class I major histocompatibility complex (MHC) protein HLA-A*0201 bound to a decameric tumor-specific antigenic peptide GVYDGREHTV were performed using a scalable MD code on high-performance computing platforms. Such computational capabilities put us in reach of simulations of various scales and complexities. The supercomputing resources available for this study allow us to compare directly differences in the behavior of very large molecular models; in this case, the entire extracellular portion of the peptide,MHC complex vs. the isolated peptide binding domain. Comparison of the results from the partial and the whole system simulations indicates that the peptide is less tightly bound in the partial system than in the whole system. From a detailed study of conformations, solvent-accessible surface area, the nature of the water network structure, and the binding energies, we conclude that, when considering the conformation of the ,1,,2 domain, the ,3 and ,2m domains cannot be neglected. © 2004 Wiley Periodicals, Inc. J Comput Chem 25: 1803,1813, 2004 [source]


Modern protein force fields behave comparably in molecular dynamics simulations

JOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 11 2002
Daniel J. Price
Abstract Several molecular dynamics simulations were performed on three proteins,bovine apo-calbindin D9K, human interleukin-4 R88Q mutant, and domain IIA of bacillus subtilis glucose permease,with each of the AMBER94, CHARMM22, and OPLS-AA force fields as implemented in CHARMM. Structural and dynamic properties such as solvent-accessible surface area, radius of gyration, deviation from their respective experimental structures, secondary structure, and backbone order parameters are obtained from each of the 2-ns simulations for the purpose of comparing the protein portions of these force fields. For one of the proteins, the interleukin-4 mutant, two independent simulations were performed using the CHARMM22 force field to gauge the sensitivity of some of these properties to the specific trajectory. In general, the force fields tested performed remarkably similarly with differences on the order of those found for the two independent trajectories of interleukin-4 with CHARMM22. When all three proteins are considered together, no force field showed any consistent trend in variations for most of the properties monitored in the study. © 2002 Wiley Periodicals, Inc. J Comput Chem 23: 1045,1057, 2002 [source]


Comparison of binding energies of SrcSH2-phosphotyrosyl peptides with structure-based prediction using surface area based empirical parameterization

PROTEIN SCIENCE, Issue 10 2000
Denise A. Henriques
Abstract The prediction of binding energies from the three-dimensional (3D) structure of a protein,ligand complex is an important goal of biophysics and structural biology. Here, we critically assess the use of empirical, solvent-accessible surface area-based calculations for the prediction of the binding of Src-SH2 domain with a series of tyrosyl phosphopeptides based on the high-affinity ligand from the hamster middle T antigen (hmT), where the residue in the pY+3 position has been changed. Two other peptides based on the C-terminal regulatory site of the Src protein and the platelet-derived growth factor receptor (PDGFR) are also investigated. Here, we take into account the effects of proton linkage on binding, and test five different surface area-based models that include different treatments for the contributions to conformational change and protein solvation. These differences relate to the treatment of conformational flexibility in the peptide ligand and the inclusion of proximal ordered solvent molecules in the surface area calculations. This allowed the calculation of a range of thermodynamic state functions (,Cp, ,S, ,H, and ,G) directly from structure. Comparison with the experimentally derived data shows little agreement for the interaction of SrcSH2 domain and the range of tyrosyl phosphopeptides. Furthermore, the adoption of the different models to treat conformational change and solvation has a dramatic effect on the calculated thermodynamic functions, making the predicted binding energies highly model dependent. While empirical, solvent-accessible surface area based calculations are becoming widely adopted to interpret thermodynamic data, this study highlights potential problems with application and interpretation of this type of approach. There is undoubtedly some agreement between predicted and experimentally determined thermodynamic parameters; however, the tolerance of this approach is not sufficient to make it ubiquitously applicable. [source]


The role of entropy and polarity in intermolecular contacts in protein crystals

ACTA CRYSTALLOGRAPHICA SECTION D, Issue 5 2009
Marcin Cie
The integrity and X-ray diffraction quality of protein crystals depend on the three-dimensional order of relatively weak but reproducible intermolecular contacts. Despite their importance, relatively little attention has been paid to the chemical and physical nature of these contacts, which are often regarded as stochastic and thus not different from randomly selected protein surface patches. Here, logistic regression was used to analyze crystal contacts in a database of 821 unambiguously monomeric proteins with structures determined to 2.5,Å resolution or better. It is shown that the propensity of a surface residue for incorporation into a crystal contact is not a linear function of its solvent-accessible surface area and that amino acids with low exposed surfaces, which are typically small and hydrophobic, have been underestimated with respect to their contact-forming potential by earlier area-based calculations. For any given solvent-exposed surface, small and hydrophobic residues are more likely to be involved in crystal contacts than large and charged amino acids. Side-chain entropy is the single physicochemical property that is most negatively correlated with the involvement of amino acids in crystal contacts. It is also shown that crystal contacts with larger buried surfaces containing eight or more amino acids have cores that are depleted of polar amino acids. [source]


The treatment of solvation by a generalized Born model and a self-consistent charge-density functional theory-based tight-binding method

JOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 15 2002
Li Xie
Abstract We present a model to calculate the free energies of solvation of small organic compounds as well as large biomolecules. This model is based on a generalized Born (GB) model and a self-consistent charge-density functional theory-based tight-binding (SCC-DFTB) method with the nonelectrostatic contributions to the free energy of solvation modeled in terms of solvent-accessible surface areas (SA). The parametrization of the SCC-DFTB/GBSA model has been based on 60 neutral and six ionic molecules composed of H, C, N, O, and S, and spanning a wide range of chemical groups. Effective atomic radii as parameters have been obtained through Monte Carlo Simulated Annealing optimization in the parameter space to minimize the differences between the calculated and experimental free energies of solvation. The standard error in the free energies of solvation calculated by the final model is 1.11 kcal mol,1. We also calculated the free energies of solvation for these molecules using a conductor-like screening model (COSMO) in combination with different levels of theory (AM1, SCC-DFTB, and B3LYP/6-31G*) and compared the results with SCC-DFTB/GBSA. To assess the efficiency of our model for large biomolecules, we calculated the free energy of solvation for a HIV protease-inhibitor complex containing 3204 atoms using the SCC-DFTB/GBSA and the SCC-DFTB/COSMO models, separately. The computed relative free energies of solvation are comparable, while the SCC-DFTB/GBSA model is three to four times more efficient, in terms of computational cost. © 2002 Wiley Periodicals, Inc. J Comput Chem 23: 1404,1415, 2002 [source]