Home About us Contact | |||
Solvent Evaporation Technique (solvent + evaporation_technique)
Selected AbstractsThe influence of metallic substitution on the physical properties of manganese mercury thiyocyanate crystalsCRYSTAL RESEARCH AND TECHNOLOGY, Issue 3 2007G. P. Joseph Abstract Good optical grade single crystals of pure, Cd2+ and Mg2+ doped Manganese Mercury Thiyocyanate (MMTC) crystals are grown by slow solvent evaporation technique at room temperature. Single crystal XRD studies reveal that the incorporation of metallic dopants has not changed the structure of the parent crystal. The SHG efficiencies of the pure and doped samples of MMTC are measured by Kurtz Perry powder method and the results are compared with urea. It is evident from microhardness study that the presence of dopants has increased the mechanical strength of MMTC crystal. The TG/DTG studies confirm that the thermal decomposition temperatures of pure (353°C), Mg2+ doped (363°C) and Cd2+ doped (365°C) MMTC are relatively high when compared to other NLO crystals of the same family. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Synthesis, growth and characterization of single crystals of pure and thiourea doped L-glutamic acid hydrochlorideCRYSTAL RESEARCH AND TECHNOLOGY, Issue 1 2007R. Sathyalakshmi Abstract L(+)Glutamic acid hydrochloride [HOOC (CH2)2CH(NH2) COOH·HCl], a monoamino dicarboxylic acid salt of L-Glutamic acid was synthesized and the synthesis was confirmed by FTIR analysis. Solubility of the material in water was determined. Pure and Thiourea doped L-Glutamic acid hydrochloride crystals were grown by low temperature solution growth using solvent evaporation technique. XRD, UV-Vis-NIR analyses were carried out for both pure and thiourea doped crystals. The crystals were qualitatively analyzed by EDAX analysis and the presence of thiourea was confirmed. The cell parameters of L-Glutamic acid hydrochloride have been determined as a = 5.151 Å, b = 11.79 Å, c = 13.35 Å by X-ray diffraction analysis and it crystallizes in orthorhombic space group P212121. UV-Vis-NIR spectra analysis showed good optical transmission in the entire visible region for both pure and doped crystals. Micro hardness of both pure and doped crystals has been determined using Vickers micro hardness tester. The SHG efficiencies of both pure and doped crystals were determined using Kurtz powder test and pure L-Glutamic acid hydrochloride crystal was found to possess better efficiency than thiourea doped L-Glutamic acid hydrochloride crystals. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Polycarbonate microspheres containing tumor necrosis factor-, genes and magnetic powder as potential cancer therapeuticsJOURNAL OF APPLIED POLYMER SCIENCE, Issue 5 2008Bin Hu Abstract Amphiphilic polycarbonate copolymers including methoxy-terminated poly(ethylene glycol)- co -poly (5,5-dimethyl trimethylene carbonate) [Poly(PEG- b -TMC)] and poly(ethylene glycol)- co -poly(trimethylene carbonate) [Poly(PEG- b -DTC)] were synthesized. The water-in-oil-in-water (W/O/W) solvent evaporation technique was adopted to produce anticancer magnetic Poly(PEG- b -DTC) microspheres containing tumor necrosis factor-, (TNF-,) genes and Fe3O4 magnetic ultrafine powder. Drug release studies showed that the microspheres can sustain a steady release rate of TNF-, genes in 0.1M phosphate buffer saline solution in vitro for up to 60 h. In vitro cytotoxicity assays demonstrated that the microspheres have high inhibition and antitumor action to human hepatocellular carcinoma (Bel-7204) cells in vitro. In vivo inhibition on the growth of hepatic carcinomas and histopathologic observation indicated that the microspheres possess a markedly high antitumor activity to human hepatocellular carcinoma (Bel-7204). © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 [source] Preparation and optimization of 2,4-D loaded cellulose derivatives microspheres by solvent evaporation techniqueJOURNAL OF APPLIED POLYMER SCIENCE, Issue 4 2007Z. El Bahri Abstract Controlled release herbicide formulations were prepared by microencapsulation using solvent evaporation technique. 2,4-D was chosen as core material, which was microencapsulated in two cellulose derivatives as matrices: cellulose acetate butyrate butyryl (CAB) and ethylcellulose (EC). The work is intended to produce systems containing the herbicide to reduce its risks by dermal contact, evaporation, or degradation and to control the release of the active agent. The microspheres loaded by 2,4-D were characterized by scanning electron microscopy and infrared spectroscopy. We have obtained microparticles in the range of D32 of 42,277 ,m with CAB and 88,744 ,m with EC by varying the process parameters. The drug entrapment was improved by controlling certain factors such as polymer/solvent ratio, pH of continuous phase, and organic phase solvent. The drug release was established in deionized water at pH = 5.5 and 25°C and the 2,4-D concentrations were estimated by UV analysis. The release data were analyzed according to Fick's law and the results demonstrate that the release rate can be controlled by modifying the process parameters. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 2742,2751, 2007 [source] Diffusional properties of chitosan hydrogel membranesJOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 6 2001Barbara Krajewska Abstract Chitosan membranes were prepared by a solvent evaporation technique, followed by crosslinking with glutaraldehyde and coating with BSA. The effects of crosslinking and BSA coating on the pore structure of such prepared hydrogel chitosan membranes were determined. The diffusion rates of 12 non-electrolytes ranging in molecular radius between 2.5 and 14,Å through the membranes were measured, and the results were interpreted in terms of the capillary pore model and free volume model of solute diffusional transport through hydrogel membranes. Glutaraldehyde crosslinking was found to reduce the membrane water content and consequently the membrane pore size and surface porosity, whereas further BSA coating brought about the opposite effect. The latter effect lessened with an increase in glutaraldehyde pretreatment of the membranes. The optimal chitosan membrane preparation, compromising between the solute flux and membrane stability and durability was obtained when the membranes were crosslinked with glutaraldehyde at concentrations between 0.01 and 0.1% (w/w). The knowledge of transport properties and of physical strength of the membranes is of importance for the development of chitosan-based controlled release systems. © 2001 Society of Chemical Industry [source] Solid-state solubility influences encapsulation and release of hydrophobic drugs from PLGA/PLA nanoparticlesJOURNAL OF PHARMACEUTICAL SCIENCES, Issue 7 2004Jayanth Panyam Abstract Biodegradable nanoparticles formulated from poly(D,L -lactide- co -glycolide) (PLGA) and polylactide (PLA) polymers are being extensively investigated for various drug delivery applications. In this study, we hypothesize that the solid-state solubility of hydrophobic drugs in polymers could influence their encapsulation and release from nanoparticles. Dexamethasone and flutamide were used as model hydrophobic drugs. A simple, semiquantitative method based on drug,polymer phase separation was developed to determine the solid-state drug,polymer solubility. Nanoparticles using PLGA/PLA polymers were formulated using an emulsion,solvent evaporation technique, and were characterized for size, drug loading, and in vitro release. X-ray powder diffraction (XRD) and differential scanning calorimetry (DSC) were used to determine the physical state of the encapsulated drug. Results demonstrated that the solid-state drug,polymer solubility depends on the polymer composition, molecular weight, and end-functional groups (ester or carboxyl) in polymer chains. Higher solid-state drug,polymer solubility resulted in higher drug encapsulation in nanoparticles, but followed an inverse correlation with the percent cumulative drug released. The XRD and DSC analyses demonstrated that the drug encapsulated in nanoparticles was present in the form of a molecular dispersion (dissolved state) in the polymer, whereas in microparticles, the drug was present in both molecular dispersion and crystalline forms. In conclusion, the solid-state drug,polymer solubility affects the nanoparticle characteristics, and thus could be used as an important preformulation parameter. © 2004 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 93:1804,1814, 2004 [source] Hydrogenated castor oil nanoparticles as carriers for the subcutaneous administration of tilmicosin: in vitro and in vivo studiesJOURNAL OF VETERINARY PHARMACOLOGY & THERAPEUTICS, Issue 2 2009C. HAN Tilmicosin-loaded solid lipid nanoparticles (SLN) were prepared with hydrogenated castor oil (HCO) by o/w emulsion,solvent evaporation technique. The nanoparticle diameters, surface charges, drug loadings and encapsulation efficiencies of different formulations were 90,230 nm, ,6.5,,12.5 mV, 40.3,59.2% and 5.7,11.7% (w/w), respectively. In vitro release studies of the tilmicosin-loaded nanoparticles showed a sustained release and the released tilmicosin had the same antibacterial activity as that of the free drug. Pharmacokinetics study after subcutaneous administration to Balb/c mice demonstrated that a single dose of tilmicosin-loaded nanoparticles resulted in sustained serum drug levels (>0.1 ,g/mL) for 8 days, as compared with only 5 h for the same amount of tilmicosin phosphate solution. The time to maximum concentration (Tmax), half-life of absorption (T½ ab) and half-life of elimination (T½ el) of tilmicosin-loaded nanoparticles were much longer than those of tilmicosin phosphate solution. Tissue section showed that drug-loaded nanoparticles caused no inflammation at the injection site. Cytotoxicity study in cell culture and acute toxicity test in mice demonstrated that the nanoparticles had little or no toxicity. The results of this exploratory study suggest that the HCO,SLN could be a useful system for the delivery of tilmicosin by subcutaneous administration. [source] Acrylate terpolymer in fabrication of medicated skin patchesPOLYMERS FOR ADVANCED TECHNOLOGIES, Issue 8 2001Vibha S. Mare Abstract An acrylate based pressure sensitive adhesive (PSA) was synthesized to design a drug-in-adhesive (DIA) type transdermal therapeutic system (TTS) for nitroglycerin used in the treatment of angina pectoris. 2-Ethylhexyl acrylate (EHA), methyl methacrylate (MMA) and acrylic acid (AA) were used to synthesize the PSA by free radical solution polymerization. The effects of reaction time, reaction temperature, initiator concentration and solvent on polymerization were studied. The synthesized terpolymer was characterized by 1H-NMR, FT-IR, differential scanning calorimetry (DSC) and gel permeation chromatography (GPC) and also evaluated for intrinsic viscosity, refractive index, peel strength, moisture uptake and skin irritation potential. The PSA was used to develop DIA type patches of nitroglycerin. The patches were cast using solvent evaporation technique and dried at controlled temperature. The patches were evaluated for thickness uniformity, weight variation, peel strength and moisture pick-up. The percent drug content and in vitro drug release was determined by high pressure liquid chromatography (HPLC) method. On the basis of in vitro release profile, patches were selected for in vitro skin permeation studies. The developed formulation TP-1 (K,=,24.892 mcg/cm2/hr) followed zero-order rate kinetics and showed better skin permeation rate in comparison to the marketed TTS (MTTS) (K,=,17.413 mcg/cm2/hr). TP-1 was subjected to stability testing for a period of 1 year according to ICH guidelines. The patches were found to be stable and an expiry date of 2 years was predicted with storage at 25,°C or below. Copyright © 2001 John Wiley & Sons, Ltd. [source] Synthesis of Folic Acid Functionalized PLLA- b -PPEGMA Nanoparticles for Cancer Cell TargetingMACROMOLECULAR RAPID COMMUNICATIONS, Issue 8 2009Feixiong Hu Abstract Poly(L -lactic acid)- block -poly(poly(ethylene glycol) monomethacrylate) (PLLA- b -PPEGMA) has been prepared by the ring-opening polymerization of lactide with a double-headed initiator, 2-hydroxyethyl 2,-methyl-2,-bromopropionate (HMBP), followed by atom transfer radical polymerization (ATRP) of poly(ethylene glycol) monomethacrylate (PEGMA). PLLA- b -PPEGMA nanoparticles with encapsulated Fe3O4 are prepared by a solvent evaporation/extraction technique, and then further functionalized with folic acid, a cancer targeting ligand. Our results show that such functionalized PLLA- b -PPEGMA nanoparticles have good potential as carriers for targeted drug delivery in cancer treatment. [source] Generic Strategy of Preparing Fluorescent Conjugated-Polymer-Loaded Poly(DL -lactide- co -Glycolide) Nanoparticles for Targeted Cell ImagingADVANCED FUNCTIONAL MATERIALS, Issue 22 2009Kai Li Abstract A general strategy for the preparation of highly fluorescent poly(DL-lactide- co -glycolide) (PLGA) nanoparticles (NPs) loaded with conjugated polymers (CPs) is reported. The process involves encapsulation of organic-soluble CPs with PLGA using a modified solvent extraction/evaporation technique. The obtained NPs are stable in aqueous media with biocompatible and functionalizable surfaces. In addition, fluorescent properties of the CP-loaded PLGA NPs (CPL NPs) could be fine-tuned by loading different types of CPs into the PLGA matrix. Four types of CPL NPs are prepared with a volume-average hydrodynamic diameter ranging from 243 to 272,nm. The application of CPL NPs for bio-imaging is demonstrated through incubation with MCF-7 breast cancer cells. Confocal laser scanning microscopy studies reveal that the CPL NPs are internalized in cytoplasm around the nuclei with intense fluorescence. After conjugation with folic acid, cellular uptake of the surface-functionalized CPL NPs is greatly enhanced via receptor-mediated endocytosis by MCF-7 breast cancer cells, as compared to that for NIH/3T3 fibroblast cells, which indicates a selective targeting effect of the folate-functionalized CPL NPs in cellular imaging. The merits of CPL NPs, such as low cytotoxicity, high fluorescence, good photostability, and feasible surface functionalization, will inspire extensive study of CPL NPs as a new generation of probes for specific biological imaging and detection. [source] |