Solid Tumor Cell Lines (solid + tumor_cell_line)

Distribution by Scientific Domains


Selected Abstracts


t(10;11)-Acute leukemias with MLL-AF10 and MLL-ABI1 chimeric transcripts: Specific expression patterns of ABI1 gene in leukemia and solid tumor cell lines

GENES, CHROMOSOMES AND CANCER, Issue 1 2001
Noriko Shibuya
The recurrent translocation t(10;11) is associated with acute myeloid leukemia (AML). The AF10 gene on chromosome 10 at band p12 and MLL at 11q23 fuse in the t(10;11)(p12;q23). Recently, we have identified ABI1 as a new partner gene for MLL in an AML patient with a t(10;11)(p11.2;q23). The ABI1 is a human homologue of the mouse Abl -interactor 1 (Abi1), encoding an Abl-binding protein. The ABI1 protein exhibits sequence similarity to homeotic genes, and contains several polyproline stretches and a src homology 3 (SH3) domain. To clarify the clinical features of t(10;11)-leukemias, we investigated 6 samples from acute leukemia patients with t(10;11) and MLL rearrangement and detected MLL-AF10 chimeric transcripts in 5 samples and MLL-ABI1 in one. The patient with MLL-ABI1 chimeric transcript is the second case described, thus confirming that the fusion of the MLL and ABI1 genes is a recurring abnormality. Both of the patients with MLL-ABI1 chimeric transcript are surviving, suggesting that these patients have a better prognosis than the patients with MLL-AF10. To investigate the roles of AF10 and ABI1 further, we examined the expression of these genes in various cell lines and fresh tumor samples using the reverse transcriptase-polymerase chain reaction method. Although AF10 was expressed in almost all cell lines similarly, the expression patterns of ABI1 were different between leukemia and solid tumor cell lines, suggesting the distinctive role of each isoform of ABI1 in these cell lines. We also determined the complete mouse Abi1 sequence and found that the sequence matched with human ABI1 better than the originally reported Abi1 sequence. Further functional analysis of the MLL-AF10 and MLL-ABI1 fusion proteins will provide new insights into the leukemogenesis of t(10;11)-AML. © 2001 Wiley-Liss, Inc. [source]


In vitro and in vivo evaluation and a case report of intense nanosecond pulsed electric field as a local therapy for human malignancies

INTERNATIONAL JOURNAL OF CANCER, Issue 3 2007
Edward B. Garon
Abstract When delivered to cells, very short duration, high electric field pulses (nanoelectropulses) induce primarily intracellular events. We present evidence that this emerging modality may have a role as a local cancer therapy. Five hematologic and 16 solid tumor cell lines were pulsed in vitro. Hematologic cells proved particularly sensitive to nanoelectropulses, with more than a 60% decrease in viable cells measured by MTT assay 96 hr after pulsing in 4 of 5 cell lines. In solid tumor cell lines, 10 out of 16 cell lines had more than a 10% decrease in viable cells. AsPC-1, a pancreatic cancer cell line, demonstrated the greatest in vitro sensitivity among solid tumor cell lines, with a 64% decrease in viable cells. When nanoelectropulse therapy was applied to AsPC-1 tumors in athymic nude mice, responses were seen in 4 of 6 tumors, including clinical complete responses in 3 of 6 animals. A single human subject applied nanoelectropulse therapy to his own basal cell carcinoma and had a complete pathologic response. In summary, we demonstrate that electric pulses 20 ns or less kill a wide variety of human cancer cells in vitro, induce tumor regression in vivo, and show efficacy in a single human patient. Therefore, nanoelectropulse therapy deserves further study as a potentially effective cancer therapy. © 2007 Wiley-Liss, Inc. [source]


Role of heat treatment in childhood cancers: Distinct resistance profiles of solid tumor cell lines towards combined thermochemotherapy

PEDIATRIC BLOOD & CANCER, Issue 5 2005
Anette Debes PhD
Abstract Background Since information on the efficacy of hyperthermia in combination with chemotherapy on pediatric tumors is limited, we performed a systematic analysis on the synergistic effects of a combined application of heat and chemotherapy on 20 tumor cell lines derived from patients with neuroblastomas, Ewing tumors, germ cell tumors (GCT), and osteosarcomas. Methods Cisplatin (cDDP), a cross-linking agent, and etoposide (VP-16), a topoisomerase II inhibitor, were examined either alone or in combination with heat (42°C, 43°C) by using the XTT-assay 1. Results Our data demonstrate that heat stress at 43°C for 1 hr, but not at 42°C, leads to a notable cytotoxic effect on the different tumor cells. The comparison of mean survival fractions reveals values between 62% for neuroblastoma cells and 76% for Ewing tumor cells. Analyzing the sensitivity to chemotherapy alone, our results show that cDDP (5 ,g/ml) reduces cell growth to 47% in Ewing tumor cells, to 61% in neuroblastoma cells, to 75% in GCT cells, and to 76% in osteosarcoma cells. Treatment with VP-16 (10 ,g/ml) decreases cell survival to mean values between 58% (neuroblastomas) and 77% (osteosarcomas). Simultaneous application of heat and chemotherapy enhances synergistically cDDP cytotoxicity in all tumor types tested, whereas the efficacy of VP-16 is only slightly influenced by additional application of hyperthermia. The cytotoxicity of cDDP (5 ,g/ml) can be increased by a factor of between 1.5 and 2.5 at 42°C and from 2.6 to 14.0 at 43°C. Furthermore, the results show that the sensitivity to heat (43°C) as well as the sensitivity to chemotherapy and combined thermochemotherapy varies considerably between cell lines of the same tumor group. Conclusions Simultaneous application of hyperthermia synergistically enhances the cytotoxicity of the alkylating agent cDDP, but not of the topoisomerase II inhibitor VP-16, in a defined spectrum of cell lines from different pediatric tumor entities. © 2005 Wiley-Liss, Inc. [source]


Cranberry proanthocyanidins are cytotoxic to human cancer cells and sensitize platinum-resistant ovarian cancer cells to paraplatin

PHYTOTHERAPY RESEARCH, Issue 8 2009
Ajay P. Singh
Abstract Polyphenolic extracts of the principal flavonoid classes present in cranberry were screened in vitro for cytotoxicity against solid tumor cells lines, identifying two fractions composed principally of proanthocyanidins (PACs) with potential anticancer activity. Matrix-Assisted Laser Desorption/Ionization Time-Of-Flight Mass Spectrometry (MALDI-TOF-MS) analysis of the proanthocyanidins (PACs) fractions indicated the presence of A-type PACs with 1,4 linkages containing between 2,8 epicatechin units with a maximum of 1 epigallocatechin unit. PACs exhibited in vitro cytotoxicity against platinum-resistant human ovarian, neuroblastoma and prostate cancer cell lines (IC50 = 79,479 µg/mL) but were non-cytotoxic to lung fibroblast cells (IC50 > 1000 µg/ml). SKOV-3 ovarian cancer cells treated with PACs exhibited classic apoptotic changes. PACs acted synergistically with paraplatin in SKOV-3 cells. Pretreatment of SKOV-3 cells with PACs (106 µg/ml) resulted in a significant reduction of the paraplatin IC50 value. Similarly, in a BrdU incorporation assay, co-treatment of SKOV-3 cells with PACs and paraplatin revealed reduced cell proliferation at lower concentrations than with either individually. In SKOV-3 cell cultures co-treated with PAC-1 and paraplatin, an HPLC analysis indicated differential quantitative presence of various PAC oligomers such as DP-8, -9, -11 and -14 indicating either selective binding or uptake. Cranberry proanthocyanidins exhibit cell-line specific cytotoxicity, induce apoptotic markers and augment cytotoxicity of paraplatin in platinum-resistant SKOV-3 ovarian cancer cells. Copyright © 2009 John Wiley & Sons, Ltd. [source]