Home About us Contact | |||
Solid Tumors. (solid + tumors)
Selected AbstractsIdentification of a novel human tissue factor splice variant that is upregulated in tumor cells,INTERNATIONAL JOURNAL OF CANCER, Issue 7 2006Hitendra S. Chand Abstract Tissue factor (TF) is a transmembrane glycoprotein that serves as the prime initiator of blood coagulation and plays a critical role in thrombosis and hemostasis. In addition, a variety of tumor cells overexpress cell-surface TF, which appears to be important for tumor angiogenesis and metastasis. To elucidate the mechanism involved in the upregulation of TF in human tumor cells, a comprehensive analysis of TF mRNA from various normal and tumor cells was performed. The results of these studies indicate that, in addition to possessing a normal full-length TF transcript and minor levels of an alternatively spliced transcript known as alternatively-spliced tissue factor (asTF) (Bogdanov et al., Nat Med 2003;9:458,62), human tumor cells express additional full-length TF transcripts that are also generated by alternative splicing. Reverse transcriptase-polymerase chain reaction (RT-PCR) and 5,-rapid amplification of cDNA ends- (5,-RACE) based analyses of cytoplasmic RNA from normal and tumor cells revealed that there is alternative splicing of the first intron between exon I and exon II resulting in 2 additional TF transcripts. One of the transcripts has an extended exon I with inclusion of most of the first TF intron (955 bp), while the second transcript is formed by the insertion of a 495 bp sequence, referred to as exon IA, derived from an internal sequence of the first intron. The full length TF transcript with alternatively spliced novel exon IA, referred to as alternative exon 1A-tissue factor (TF-A), represented ,1% of the total TF transcripts in normal cells, but constituted 7,10% of the total TF transcript in tumor cells. Quantitative real-time RT-PCR analysis indicated that cultured human tumor cells contain 10,25-fold more copy numbers of TF-A in comparison to normal, untransformed cells. We propose that high-level expression of the novel TF-A transcript, preferentially in tumor cells, may have utility in the diagnosis and staging of a variety of solid tumors. © 2005 Wiley-Liss, Inc. [source] Tyrosine kinase inhibitors: From rational design to clinical trialsMEDICINAL RESEARCH REVIEWS, Issue 6 2001Peter Traxler Abstract Protein kinases play a crucial role in signal transduction as well as in cellular proliferation, differentiation, and various regulatory mechanisms. The inhibition of growth related kinases, especially tyrosine kinases, might provide new therapies for diseases such as cancer. The progress made in the crystallization of protein kinases has confirmed that the ATP-binding domain of tyrosine kinases is an attractive target for drug design. Three successful examples of drug design at Novartis using a tyrosine kinase as a molecular target are described. PKI166, a pyrrolo[2,3,- d]pyrimidine derivative, is a dual inhibitor of both the EGFR and the ErbB2 kinases. The compound entered clinical trials in 1999, based on its favorable preclinical profile: potent inhibition of EGF-mediated signalling in cells, in vivo antitumor activity in several EGFR overexpressing xenograft tumor models in nude mice, long-lasting inhibition of EGF-stimulated EGFR autophosphorylation in tumor tissue, good oral bioavailability in animals, and no prohibitive in vitro and in vivo toxicity findings. The anilino-phthalazine derivative PTK787/ZK222584 (Phase I, co-developed by Schering AG, Berlin) is a potent and selective inhibitor of both the KDR and Flt-1 kinases with interesting anti-angiogenic and pharmacokinetic properties (orally bioavailable). STI571 (GlivecÔ, GleevecÔ), a phenylamino-pyrimidine derivative, is a potent inhibitor of the Abl tyrosine kinase, which is present in 95% of patients with chronic myelogenous leukemia (CML). The compound specifically inhibits proliferation of v-Abl and Bcr-Abl expressing cells (including cells from CML patients) and shows anti-tumor activity as a single agent in animal models at well-tolerated doses. Pharmacologically relevant concentrations are achieved in the plasma of animals (oral administration). Promising data from phase I and II clinical trials in CML patients (98% haematological response rate in Phase I) support the fact that the STI571 represents a new treatment modality for CML. In addition, potent inhibition of the PDGFR and c-Kit tyrosine kinases also indicates its possible clinical use in solid tumors. © 2001 John Wiley & Sons, Inc. Med Res Rev, 21, No. 6, 499,512, 2001 [source] Antivascular effects of TZT-1027 (Soblidotin) on murine Colon26 adenocarcinomaCANCER SCIENCE, Issue 12 2006Junichi Watanabe We investigated the ability of TZT-1027 (Soblidotin), a novel antimicrotubule agent, to induce antivascular effects, because most vascular targeting agents that selectively disrupt tumor vasculature also inhibit tubulin polymerization. Treatment with 10,7 g/mL TZT-1027 rapidly disrupted the microtubule cytoskeleton in human umbilical vascular endothelial cells (HUVEC), and significantly enhanced vascular permeability in HUVEC monolayers. In addition, single intravenous administration of 2 mg/kg TZT-1027 to mice bearing Colon26 tumors significantly reduced tumor perfusion and caused extravascular leakage of erythrocytes 1 h after administration. Subsequently, thrombus formation with deposition of fibrin and tumor necrosis was observed 3 and 24 h after administration, respectively. These results strongly suggest that TZT-1027 possesses antivascular effects. TZT-1027 induced apoptosis not only in HUVEC but also in C26 cancer cells (cell line of Colon26 solid tumor) in vitro, suggesting it exerts direct cytotoxicity against tumor cells in addition to its antivascular effects. A single intravenous administration of 1, 2 and 4 mg/kg TZT-1027 significantly prolonged the survival of mice with advanced-stage Colon26 tumors in a dose-dependent manner. Furthermore, TZT-1027 itself less markedly enhanced the permeability of normal vessels, but was additive with vascular endothelial growth factor, indicating the possibility that TZT-1027 selectively exerts its activity on tumor vessels. In summary, these results suggest that TZT-1027 exerts both an indirect antivascular effect and a direct cytotoxic effect, resulting in strong antitumor activity against advanced-stage tumors, and that TZT-1027 may be useful clinically for treating solid tumors. (Cancer Sci 2006; 97: 1410,1416) [source] Gastrointestinal stromal tumors (GIST): A model for molecule-based diagnosis and treatment of solid tumorsCANCER SCIENCE, Issue 4 2003Yukihiko Kitamura Gastrointestinal stromal tumor (GIST) is the most common mesenchymal tumor of the human gastrointestinal (GI) tract. The c-kit receptor tyrosine kinase (KIT) is expressed by practically all GISTs, and gain-of-function mutations of KIT are present in most GISTs. Interstitial cells of Cajal (ICC) are the pacemaker of the peristaltic movement of the GI tract. Since signals through KIT are essential for development of ICC and since multiple GISTs develop from the hyperplastic lesion of ICCs in familial GIST patients with germ-line mutations of KIT, GISTs are considered to originate from ICC. Imatinib mesylate, which was developed for treatment of chronic myeloid leukemia (CML), was found to be useful for treatment of GISTs. Imatinib mesylate inhibits BCR-ABL fused tyrosine kinase that causes CML. Imatinib mesylate also inhibits the mutated KIT observed in most GISTs, and this explains the effectiveness of Imatinib mesylate on GISTs. GISTs appear to serve as a model for molecule-based diagnosis and treatment of solid tumors. (Cancer Sci 2003; 94: 315,320) [source] A novel carbazole topoisomerase II poison, ER-37328: potent tumoricidal activity against human solid tumors in vitro and in vivoCANCER SCIENCE, Issue 1 2003Katsuji Nakamura We have discovered a novel topoisomerase II (topo II) poison, ER-37328 (12,13-dihydro-5-[2-(dimethylamino)ethyl]-4H-benzo[c]py-rimido[5,6,1- jk]carbazole-4,6,10(5H, 11H)-trione hydrochloride), which shows potent tumor regression activity against Colon 38 cancer inoculated s.c. Here, we describe studies on the cell-killing activity against a panel of human cancer cell lines and the antitumor activity of ER-37328 against human tumor xenografts. In a cell-killing assay involving 1-h drug treatment, ER-37328 showed more potent cell-killing activity (50% lethal concentrations (LC50s) ranging from 2.9 to 20 ,M) than etoposide (LC50s>60 ,M) against a panel of human cancer cell lines. ER-37328 induced double-stranded DNA cleavage, an indicator of topo II-DNA cleavable complex formation, within 1 h in MX-1 cells, and the extent of cleavage showed a bell-shaped relationship to drug concentration, with the maximum at 2.5 ,M. After removal of the drug (2.5 ,M) at 1 h, incubation was continued in drug-free medium, and the amount of cleaved DNA decreased. However, at 10 ,M, which is close to the LC50 against MX-1 cells, DNA cleavage was not detected immediately after 1-h treatment, but appeared and increased after drug removal. This result may explain the potent cell-killing activity of ER37328 in the 1-h treatment. In vivo, ER-37328 showed potent tumor regression activity against MX-1 and NS-3 tumors. Moreover, ER-37328 had a different antitumor spectrum from irinotecan or cisplatin against human tumor xenografts. In conclusion, ER-37328 is a promising topo II poison with strong cell killing activity in vitro and tumor regression activity in vivo, and is a candidate for the clinical treatment of malignant solid tumors. (Cancer Sci 2003; 94: 119,124) [source] |