Home About us Contact | |||
Solid Fuels (solid + fuel)
Selected AbstractsUtilization of semi-natural grassland through integrated generation of solid fuel and biogas from biomass.GRASS & FORAGE SCIENCE, Issue 4 2009Abstract A procedure (Integrated Generation of Solid Fuel and Biogas from Biomass, IFBB) was developed which uses a screw press to separate the readily digestible constituents of mature grassland biomass into a press fluid for conversion into biogas and a fibrous press cake for processing into a solid fuel. Effects of mechanical dehydration and prior hydrothermal conditioning at different temperatures (5, 60 and 80°C) on concentrations of organic compounds in the press fluid and on methane production in batch experiments were evaluated for five semi-natural grasslands typical of mountain areas of Germany. Results show that the crude protein concentration of the press fluids was higher and crude fibre concentration was lower than that of the parent material (herbage conserved as silage). Digestion tests in batch fermenters showed that the methane yield of the press fluids was double [397,426 normal litre (NL) kg,1 volatile solids (VS) after 13 d] that of the whole-crop grassland silage (218 NL kg,1 VS after 27 d) but no consistent effect of higher temperature during conditioning was observed. Within 13 d of fermentation the decomposition of the organic matter (OM) that occurred in the press fluids was 0·90, whereas after 27 d of fermentation more than 0·40 of the OM remained undigested in the whole-crop silage, pointing at a marked reduction in retention time for anaerobic digestion of press fluids in continuous systems. Press fluids produced 0·90 of the maximum methane yield after 4 to 7 d compared with 19 days for the whole-crop silage. [source] Power generation from coal and biomass based on integrated gasification combined cycle concept with pre- and post-combustion carbon capture methodsASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, Issue 6 2009Calin-Cristian Cormos Abstract Gasification technology is a process in which solid fuel is partially oxidised by oxygen and steam/water to produce a combustible gas called syngas (mainly a mixture of hydrogen and carbon monoxide). Syngas can be used either for power generation or processed to obtain various chemicals (hydrogen, ammonia, methanol, etc.). This article evaluates the possibilities of solid fuel decarbonisation by capturing carbon dioxide resulted form thermo-chemical conversion of solid fuel using gasification. Evaluation is focused on power generation technology using syngas produced by solid fuel gasification (so-called integrated gasification combined cycle,IGCC). Case studies analysed in the article are using a mixture of coal and biomass (sawdust) to produce around 400 MW electricity simultaneously with capturing about 90% of the feedstock carbon. Various carbon dioxide capture options (post- and pre-combustion) are compared with situation of no carbon capture in terms of plant configurations, energy penalty, CO2 emissions, etc. Plant options are modelled using ChemCAD, and simulation results are used to assess the plant performances. Plant flexibility and future improvements are also discussed. Copyright © 2009 Curtin University of Technology and John Wiley & Sons, Ltd. [source] Short Communication: application of a surrogate material in assessing the impact of porosity on re-ignition of wood-based materialsFIRE AND MATERIALS, Issue 2 2002Behdad Moghtaderi Re-ignition behaviour of charred solid fuels after extinction by water is studied. In this communication the effect of material porosity on re-ignition is investigated. A surrogate ceramic material is used so as to separate the pyrolysis and combustion processes from those associated with heat transfer. Experimental data are reported for different sample thickness and porosity, and varying heat flux and water application time. Copyright © 2002 John Wiley & Sons, Ltd. [source] Numerical simulation of gaseous fuel injection: A new methodology for multi-dimensional modellingINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 6 2010Luca Andreassi Abstract The use of natural gas (instead of liquid or solid fuels) is nowadays drawing an increasing interest in many applications (gas turbines, boilers, internal combustion engines), because of the greater attention to environmental issues. To facilitate the development of these applications, computer models are being developed to simulate gaseous injection, air entrainment and the ensuing combustion. This paper introduces a new method for modelling the injection process of gaseous fuels that aims to hold down grid requirements in order to allow the simulation also of other phenomena, like combustion or valve and piston motion, in reciprocating internal combustion engines. After a short overview of existing models, the transient jet model and the evaluation of inflow conditions are described in detail. Then a basic study of the grid effects on the jet evolution is presented. The model is updated and validated by comparing numerical results with available experimental data for two different operating conditions: a subsonic and a supersonic under-expanded case. The model demonstrates to be fast enough to be used in a multi-dimensional code and accurate enough to follow the real gas jet evolution. Copyright © 2009 John Wiley & Sons, Ltd. [source] Characterization of combustion-derived individual fine particulates by computer-controlled scanning electron microscopyAICHE JOURNAL, Issue 11 2009Lian Zhang Abstract Particulate matter (PM) emission from the combustion of solid fuels potentially poses a severe threat to the environment. In this article, a novel approach was developed to examine the properties of individual particles in PM. With this method, PM emitted from combustion was first size-segregated. Subsequently, each size was characterized by computer-controlled scanning electron microscopy (CCSEM) for both bulk property and single particle analysis. Combustion of bituminous coal, dried sewage sludge (DSS) and their mixture were conducted at 1200°C in a laboratory-scale drop tube furnace. Three individual sizes smaller than 2.5 ,m were investigated. The results indicate that a prior size-segregation can greatly minimize the particle size contrast and phase contrast on the backscattered images during CCSEM analysis. Consequently, high accuracy can be achieved for quantifying the sub-micron particles and their inherent volatile metals. Regarding the PM properties as attained, concentrations of volatile metals including Na, K, and Zn have a negative relationship with particle size; they are enriched in the smallest particles around 0.11 ,m as studied here. Strong interactions can occur during the cofiring of coal and DSS, leading to the distinct properties of PM emitted from cofiring. The method developed here and results attained from it are helpful for management of the risks relating to PM emission during coal-fired boilers. © 2009 American Institute of Chemical Engineers AIChE J, 2009 [source] Development of a Characterization Method for the Combustion Behavior of Solid Recovered FuelsCHEMICAL ENGINEERING & TECHNOLOGY (CET), Issue 7 2004O. Kock Apart from coal, fuels like solid biogenic or recovered fuels will gain increasing importance in power generation plants because of their potential to lower CO2 emissions. In order to produce a constant fuel quality and to guarantee a safe power plant operation, it is rather important to know the combustion behavior of the different fuel types. A characterization method is proposed by which the combustion behavior of solid fuels can be analyzed with low-cost equipment and reliable results. [source] |