Home About us Contact | |||
Solid Earth (solid + earth)
Selected AbstractsSurface deformation induced by present-day ice melting in SvalbardGEOPHYSICAL JOURNAL INTERNATIONAL, Issue 1 2009H. P. Kierulf SUMMARY The vertical movement of the Earth's surface is the result of a number of internal processes in the solid Earth, tidal forces and mass redistribution in the atmosphere, oceans, terrestrial hydrosphere and cryosphere. Close to ice sheets and glaciers, the changes in the ice loads can induce large vertical motions at intraseasonal to secular timescales. The Global Positioning System (GPS) and Very Long Baseline Interferometry (VLBI) antennas in Ny-Ĺlesund, Svalbard that started observations in 1991 and 1995, respectively, observe vertical uplift rates on the order of 8 ± 2 mm yr,1, which are considerably larger than those predicted by postglacial rebound (PGR) models (order 2 mm yr,1). The observations also indicate increased uplift rates starting some time in 2000. A local GPS campaign network that has been reoccupied annually since 1998, reveals a tilting away from the neighbouring glaciers. The Svalbard glaciers have been undergoing melting and retreat during the last century, with increased melting since about 2000. We compared the observed vertical motion to the motion predicted by loading models using a detailed ice model with annual time resolution as forcing. The model predictions correlate well with the observations both with respect to the interannual variations and the spatial pattern of long-term trends. The regression coefficients for predicted and observed interannual variations in height is 1.08 ± 0.38, whereas the regression coefficient for the predicted and observed spatial pattern turns out to be 1.26 ± 0.42. Estimates of the predicted secular trend in height due to PGR and present-day melting are on the order of 4.8 ± 0.3 mm yr,1 and thus smaller than the observed secular trend in height. This discrepancy between predictions and observations is likely caused by the sum of errors in the secular rates determined from observations (due to technique-dependent large-scale offsets) and incomplete or erroneous models (unaccounted tectonic vertical motion, errors in the ice load history, scale errors in the viscoelastic PGR models and the elastic models for present-day melting). [source] SUPRACENTER: Locating fireball terminal bursts in the atmosphere using seismic arrivalsMETEORITICS & PLANETARY SCIENCE, Issue 9 2004W. N. EDWARDS A computer program, SUPRACENTER, calculates travel times by ray tracing through realistic atmospheres (that include winds) and locates source positions by minimization of travel time residuals. This is analogous to earthquake hypocenter location in the solid Earth but is done through a variably moving medium. Inclusion of realistic atmospheric ray tracing has removed the need for the simplifying assumption of an isotropic atmosphere or an approximation to account for "wind drift." This "drift" is on the order of several km when strong, unidirectional winds are present in the atmosphere at the time of a fireball's occurrence. SUPRACENTER-derived locations of three seismically recorded fireballs: 1) the October 9, 1997 El Paso superbolide; 2) the January 25, 1989 Mt. Adams fireball; and 3) the May 6, 2000 Morávka fireball (with its associated meteorite fall), are consistent with (and, probably, an improvement upon) the locations derived from eyewitness, photographic, and video observations from the respective individual events. If direct acoustic seismic arrivals can be quickly identified for a fireball event, terminal burst locations (and, potentially, trajectory geometry and velocity information) can be quickly derived, aiding any meteorite recovery efforts during the early days after the fall. Potentially, seismic records may yield enough trajectory information to assist in the derivation of orbits for entering projectiles. [source] Viscoelastic displacement and gravity changes due to point magmatic intrusions in a gravitational layered solid earthGEOPHYSICAL JOURNAL INTERNATIONAL, Issue 1 2001José Fernández Summary We present a method for the computation of time-dependent geodetic and geophysical signatures (deformation, potential and gravity changes) due to magmatic intrusions in a layered viscoelastic,gravitational medium. This work is an extension of a deformation model previously developed to compute effects due to volcanic loading in an elastic gravitational layered media. The model assumes a planar earth geometry, useful for near field problems, and consists of welded elastic and viscoelastic layers overlying a viscoelastic half-space. Every layer can either be considered elastic or viscoelastic. The intrusion (treated as a point source) can be located at any depth, in any of the layers or in the half-space. Several examples of theoretical computations for different media are also presented. We have found that, in line with previous results obtained by other authors, introducing viscoelastic properties in all or part of the medium can extend the effects (displacements, gravity changes, etc.) considerably and therefore lower pressure increases are required to model given observed effects. The viscoelastic effects seem to depend mainly on the rheological properties of the layer (zone) where the intrusion is located, rather than on the rheology of the whole medium. We apply our model to the 1982,1984 uplift episode at Campi Flegrei, modelling simultaneously the observed vertical displacement and gravity changes. The results clearly show that for a correct interpretation of observed effects it is necessary to include the gravitational field in the anelastic theoretical models. This factor can change the value and pattern of time-dependent deformation as well as the gravity changes, explaining cases of displacement without noticeable gravity changes or vice versa, cases with uplift and incremental gravity values, and other cases. The combination of displacement and gravity changes is found to be especially effective in constraining the possible characteristics of the magmatic intrusion as well as the rheology of the medium surrounding it. [source] Soil erosion and the adaptive cycle metaphorLAND DEGRADATION AND DEVELOPMENT, Issue 6 2005L. K. A. Dorren Abstract The landscapes that we live in and the changes that they undergo play an important part in the qualities of our lives. They provide natural goods and services of value to us because of the existence of soil, which is a medium between the solid earth and the sphere in which we live our daily life. The medium soil is constantly subject to change and one of the causes is soil erosion. If one tries to understand or to deal with soil erosion it is helpful to consider soil as an integral part of continuously changing landscapes and to be aware of the different functions of a soil in its environmental context at different scales. To clarify this, we present three important concepts. These are: (1) scale/connectivity; (2) change; and (3) resilience. These concepts will be put in an innovative framework called the panarchy theory, which represents a hierarchical structure in which both human and natural systems are linked together in adaptive cycles. Presenting soil erosion in such a framework allows us to link causes and their impacts at different scales. The application of such a framework and the insight obtained could facilitate the assessment of risks and possibilities for sustainable use. Copyright © 2005 John Wiley & Sons, Ltd. [source] |